低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

石墨类负极有哪些缺陷?促进动力锂电池进一步发展的关键是什么?

钜大LARGE  |  点击量:2692次  |  2019年12月24日  

随着燃料化石能源危机和全球温室效应问题的加剧,发展新能源成为迫在眉睫的任务。新能源的发展必须依靠先进的储能技术,其中锂离子电池因其高能量密度、长循环寿命和高平均输出电压等优点已成为关注焦点。尤其在现今,消费电子类产品更新换代的加快、动力汽车产业的蓬勃发展、智能电网的迅速推广以及其它技术领域需求扩大等更加促进了锂离子电池产业的迅速发展。


负极作为其关键构成成分之一,直接决定了锂离子电池的性能,目前市场上主要采用石墨类负极材料。然而,石墨类负极的两个致命缺陷:低能量密度(理论比容量372mAh·g–1)和安全隐患(析锂现象)令其无法适用于动力电池。因此,寻找一种新型高容量、安全性好和长循环的材料来替换石墨类负极材料成为动力锂离子电池进一步发展的关键。


本文从SiOx的结构与电化学储锂机制方面出发,介绍了SiOx的结构与电化学性能的关系,阐明了SiOx存在的主要挑战问题,并归纳了近期研究者们对硅氧化物负极的主要改进思路,最后对SiOx负极材料未来发展方向进行了展望。


1SiOx结构


SiOx材料早在几十年前就已被人们所认知并在许多功能性应用中实现商业化,如利用其半导体属性而广泛运用于各种光电子器件,之后才被运用于锂离子电池负极材料。因为SiOx为一种无定形结构,且在SiOx中Si的化合价态存在多样性(Si0、Si2+、Si4+等),一些常规测试技术手段如X射线衍射(XRD),X射线光电子谱(XPS)和X射线Raman衍射等分辨率有限,仅能提供无定型SiOx的平均结构信息,因此,对于SiOx微观结构的确定长期以来一直是个难题。随着科技的不断进步,对SiOx的结构认识也在不断深入。


最早,出现有两种经典的结构模型:随机键合模型(Random-bonding,RB模型)和随机混合模型(Random-mixture,RM模型)。其中RB模型指出SiOx的结构为一种由SiSi键与SiO键形成的连续随机分布并贯穿整个网络的单相结构;而RM模型则认为SiOx的结构是一种由超小范畴(<1nm)的Si和的SiO2混合物组成的双相结构。


2SiOx储锂机制和电化学性能


由前面得知,SiOx并非由单一相组成,而是由许多均匀分布的纳米级Si团簇、SiO2团簇以及介于Si/SiO2两相界面之间的SiOx过渡相组成,因此其储锂机理非常复杂。Miyachi等发现SiO首次锂化产物为LixSi、锂硅酸盐和Li2O,其中部分锂硅酸盐具有可逆性。JunKyuLee等认为SiO嵌锂形成Li2O和LixSi,SiO2嵌锂形成Li4SiO4和LixSi。而Chen等认为SiO2嵌锂过程中不仅形成Li4SiO4和LixSi,还形成Li2O和Li2Si2O5。


Ohzuku等证明SiO在首次嵌锂过程中形成Li4SiO4和LixSi,其中有部分SiO2不参与反应。Yamamura等发现结晶性的SiO2不具备嵌锂电化学活性。


2016年,Yasuda等运用Li-Si-O三元相图,从热力学角度分析了SiO首次脱嵌锂的演变过程,具体如图3所示:(1)点①–⑦,初始阶段SiO中的SiO2组分连续锂化为Li2Si2O5、Li2SiO3、Li4SiO4且与Si共存;(2)点⑦–⑬,Si连续合金化为Li12Si7、Li7Si3、Li13Si4并与Li4SiO4共存;(3)点⑬–⑮,Li4SiO4分解成Li13Si4和Li2O;(4)点⑮–⑰,Li13Si4逐步锂化形成Li22Si5并与Li2O共存;(5)点⑱,为锂沉积过程。根据上述锂化过程,可以得出SiO在不同平衡条件下的理论容量和首次充放电效率,平衡点⑬的理论容量和首次充放电效率分别为1480mAh·g–1和70.9%,平衡点⑮的理论容量和首次充放电效率分别为2584mAh·g–1和81.0%,平衡点⑰的理论容量为3283mAh·g–1、首次充放电效率为84.4%。


3SiOx存在的主要问题


3.1SiOx循环性能的衰减


在硅/锂合金化过程中,伴随着巨大的体积效应。虽然O原子的存在会在原位生成惰性缓冲基质相,但是总体体积效应仍然较大,产生的机械应力会使得活性材料粉化并与集流体之间发生电接触失效;另外,SiOx的本征电导率低,不利于材料电化学性能的发挥;此外,SiOx负极与有些电解液的匹配性也不是很好,易被锂盐分解产生的微量HF腐烛等。由于以上因素的共同影响,最终导致了SiOx负极材料的循环性能严重衰减。


3.2SiOx首次Coulomb效率低


在电池运行过程中,由于有机电解质热力学的不稳定性,使其在低电位如负极工作电位处会发生分解而在电极表面形成固体电解质界面相(SEI),这种不可逆SEI的形成消耗了电解液和正极材料脱出的Li,导致活性正极材料容量的明显损失和低的第一循环Coulomb效率(CE)。


钜大锂电,22年专注锂电池定制

钜大核心技术能力