钜大LARGE | 点击量:1000次 | 2020年04月15日
长春应化所锂-氧电池反应机理研究获进展
(a)液氨中合成LiO2的现场拉曼光谱数据(b)液氨中合成的LiO2在放置一段时间后产生N2的质谱数据(c-e)液氨中LiO2最终转变为LiOH和LiOHbullH2O红外光谱,拉曼光谱和x-射线研究结果。
锂-氧电池与锂-离子电池相比,具有更高的理论比能量,吸引了学术界和工业界的广泛关注。目前,锂-氧电池表现为循环稳定性较差,这归因于氧还原物种(O2,LiO2和Li2O2)和电池组件(电极材料和电解液)之间的副反应。若要消除这些副反应,需要从本质上理解氧还原物种的化学性质。O2和Li2O2已从实验和理论上研究得较为透彻,而LiO2由于在常规实验条件下不易获得,因此其化学性质尚不清晰。
中国科学院长春应用化学研究所彭章泉团队,报道了一种在液氨(-78℃)中合成LiO2的方法,比较了O2,LiO2和Li2O2在液氨中的化学反应性,首次从实验上证明LiO2是锂-氧电池中反应活性最高的氧还原物种,并从理论上给出了LiO2在液氨中的反应机制。同时,证明LiO2中间产物的存在时间越短,锂-氧电池的可逆性越高。研究工作以LiO2:CryosynthesisandChemical/ElectrochemicalReactivities为题,发表在TheJournalofPhysicalChemistryLetters上。
基于对锂-氧电池氧还原反应中间产物化学性质的理解,研究团队开发了具有高度化学和电化学稳定性的Hexamethylphosphoramide电解液体系,与目前的醚类电解液相比,提升了电池的循环寿命。研究工作以AHigh-PerformanceLi-O2BatterywithaStronglySolvatingHexamethylphosphoramideElectrolyteandaLiPON-ProtectedLithiumAnode为题,发表在AdvancedMaterials上。
上一篇:韩国研发世界首款可变形锂离子电池