低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

比较分析燃料电池和锂电池两种电池的性能

钜大LARGE  |  点击量:764次  |  2018年10月09日  

机动车性能主要为续航能力、充电/充氢时间、输出功率和安全性等。燃料电池能量密度远高于锂电池,相应电池容量,快充能力和续航里程就具备了天然的优势,即使是和锂电池的顶级豪车Tesla相比也是大幅领先。但其功率密度不高,最大输出功率取决于辅助的动力电池系统,相应最高时速和百公里加速指标和锂电池相差不大。为了便于比较,我们下文选取目前主流的2L排气量汽油车,对应45度锂电池车和输出功率100KW燃料电池车作为分析基准。

能量密度比较

锂电池作为蓄电池的一种,是个封闭体系,电池只是能量的载体,必须提前充电才能运行,其能量密度取决于电极材料的能量密度。由于目前负极材料的能量密度远大于正极,所以提高能量密度就要不断升级正极材料,如从铅酸、到镍系、再到锂电池。但锂已经是原子量最小的金属元素,比锂离子更好的正极材料理论上就只有纯锂电极,但能量密度其实也只有汽油的1/4,而且商业化的技术难度极大,几十年内都无望突破。因此锂电池能量密度提升受制于理论瓶颈,空间非常有限,最多也就是从目前的160Wh/KG提高至300Wh/KG,即使达到也只有燃料电池的1/120,可谓输在起跑线上。

体积能量密度比较

燃料电池的原料氢气主要缺点就是体积能量密度不高,现在基本上是采用加压来解决这个问题。按照现行的700个大气压的加压模式,其体积能量密度是汽油1/3。同样跑300公里,燃料电池储氢罐体积为100L,重量为30KG,对应汽油车油箱为30L,但电动机体积比内燃机小80L,总体积相差不大。锂电池车分为三元和磷酸铁锂两种主流技术路线,代表企业为Tesla和比亚迪。三元能量密度更高,但安全性差,需要辅助的安全保护设备,跑300公里所需的两种电池体积分别为140L和220L,重量为0.4吨和0.6吨,都远高于燃料电池。展望未来如果储氢合金和低温液态储氢技术能够突破,燃料电池体积能量密度将分别增加1.5倍和2倍,优势会更为明显。

燃料电池vs锂电池性能比较

功率密度比较

燃料电池本质上可以理解为以氢气为原料的化学发电系统,因此输出功率比较稳定,为了最大提高放电功率必须附加动力电池系统,如丰田Mirai就是配套镍氢电池。但作为一个开放的动力系统,其能量来自于外部输入,附加的镍氢电池不需要考虑储能的问题,只要5-8度就能满足需求,对电池寿命的要求也不高,在真实工况下的使用限制很少。锂电池虽然理论放电效率很高,但为了不伤害电池寿命,使用限制很多。在充满电的情况下不能大倍率放电,快速放电只适用0-80%这个区间。即使如此,以5C倍率放电,实验室中的电池循环寿命也会缩短到只有600次,真实工况下会进一步降至400次,如Telsa即使最大功率可达310KW,但实际放电倍率也只有4C。而且锂电池作为能量密度不高的封闭储能体系,高功率放电和高续航里程基本很难兼容,除非大幅提升电池重量。即使Tesla采用了目前能量密度最好的三元电池,其电池组件重量都接近半吨。

安全性比较

除了上述指标,安全性对于机动车来说无疑也非常关键。锂电池作为封闭的能量体系,从原理上高能量密度和安全性就很难兼容,否则就等同于炸弹。因此现在主流工艺路线中,能量密度低的磷酸铁锂安全性却较好,电池温度达到500-600度时才开始分解,基本不需要太多的保护辅助设备。Telsa采用的三元电池能量密度虽高,但不耐高温,250-350度就会分解,安全性差。其解决方法是并联了超过7000节电池,大幅降低了单个电池漏液,爆炸带来的危险,即使如此也还需要结合一套复杂的电池保护设备。并且前期发生的几次事故,虽然得益于Telsa的安全设计并没有出现人员伤亡,但就事故本身而言,其实都是非常轻微的碰撞,车身也没有收到什么伤害,但电池却着火了,也侧面反映了其安全性上天然的劣势。

燃料电池由于原料氢气易燃易爆,市场普遍担心其安全性问题。但如我们下表的数据,相比汽油蒸汽和天然气这两种常见的车用可燃气体,氢气的安全性并不差,甚至还略好。现在车用储氢装置都采用碳纤维材料,在80KM/h速度多角度碰撞测试中都可以做到毫发无损。即使车祸导致泄露,由于氢气爆炸要求浓度高,在爆炸前一般就已经开始燃烧,反而很难爆炸。而且氢气重量轻,溢出系统的氢气着火后会迅速向上升起,反而一定程度上保护了车身和乘客。而汽油为液态,锂电池为固态,很难在大气中上升,燃烧都在车舱底部,整车会迅速着火报废。氢气储运环节其实和LNG非常类似,只是所需压力更大,随着商业化推进,其整体安全性也还是可控的。

钜大锂电,22年专注锂电池定制

钜大核心技术能力