低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

为什么充电电池就可以充电,而普通电池充电会有破裂和漏液的危险?

钜大LARGE  |  点击量:2662次  |  2019年06月04日  

大家有没有好奇过,为什么充电电池就可以充电,但一般电池如果用充电器充电,不仅不能充电,甚至还可能会有电池破裂和漏液的危险?


这其实这是电池内部的构造决定的,我平常的电池大约可以分成碳性电池和碱性电池两种。


碳性电池,如果对它充电的话,氢气就被还原出来(电解水),就会有爆炸的可能性。


碳性电池


而碱性电池,理论上是可以充电的,但是要经过非常仔细的设计才可以。充电的电流电压和温度等,都要做好控制才能充电,而且可重复充电的次数也不高,充电时间又长,所以一般来说碱性电池也是不会拿充电的。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

碱性电池


那么充电电池,为什么就可以拿来充电呢?其实充电电池就是所谓的镍氢电池。


镍氢电池


镍氢电池的充放电过程是不会释放气体,而且它们容量大,可重复充电的次数高,充电速度也比较快,所以非常适合重复充电使用。但是它也有个缺点,就是“自放电”。所谓“自放电”就是,电池能充满了以后,几个月后就完全没电了。


不过最近有国外电池厂商发明了一种“低自放电镍氢电池”,他们电池正负极之间的分隔层的材料,让电池在没有使用的情况之下,里面的电子不容易从正极跑到负极去放电,使得“自放电”的现象大大的降低。

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

当然如果各位,平时生活上有高频率使用电池的话,还是建议使用充电电池,不仅实惠,而且环保!


锂离子电池是继镉镍、氢镍电池之后发展最快的二次电池。它的高能特性让它的未来看起来一片光明。但是,锂离子电池并不完美,其最大的问题就是它的充放电循环的稳定性。本文总结并分析了锂离子电池容量衰减的可能原因,包括过充电,电解液分解及自放电。


锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。


在锂离子电池中,容量平衡表示成为正极对负极的质量比,


即:γ=m+/m-=ΔxC-/ΔyC+


上式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。


一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。


对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际情况却复杂得多。


任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。


在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等


1


原因一:过充电


1、石墨负极的过充反应:


电池在过充时,锂离子容易还原沉积在负极表面:


沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:


①可循环锂量减少;


②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF或其他产物;


③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻;


④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。


快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合。但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。


2、正极过充反应


当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。


正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。


(1)LiyCoO2


LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2y<0.4


同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。


(2)λ-MnO2


锂锰反应发生在锂锰氧化物完全脱锂的状态下:λ-MnO2→Mn2O3+O2(g)


3、电解液在过充时氧化反应


当压高于4.5V时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。


影响氧化速率因素:


正极材料表面积大小


集电体材料


所添加的导电剂(炭黑等)


炭黑的种类及表面积大小


在目前较常用电解液中,EC/DMC被认为是具有最高的耐氧化能力。溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne-


任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压


2


原因二:电解液分解(还原)


I在电极上分解


1、电解质在正极上分解:


电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。


正极分解电压通常大于4.5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。


2、电解质在负极上分解:


电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。


钝化膜的形成


电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但是


(1)还原产生的不溶物对溶剂还原生成物会产生不利影响;


(2)电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6还原生成LiF、LixPF5-x、PF3O和PF3);


(3)钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。


(4)如果钝化膜上有裂缝,则溶剂分子能透入,使钝化膜加厚,这样不但消耗更多的锂,而且有可能阻塞碳表面上的微孔,导致锂无法嵌入和脱出,造成不可逆容量损失。在电解液中加一些无机添加剂,如CO2,N2O,CO,SO2等,可加速钝化膜的形成,并能抑制溶剂的共嵌和分解,加入冠醚类有机添加剂也有同样的效果,其中以12冠4醚最佳。


钜大锂电,22年专注锂电池定制

钜大核心技术能力