钜大LARGE | 点击量:1207次 | 2019年06月12日
锂离子电池衰减机理梳理
锂电池作为电动汽车最关键,也是成本占比最高的部件,能够准确预测和评估电池寿命衰减程度越来越重要。准确的寿命评估一方面可以提高车辆性能和用户体验,另一方面在商业上如何最优配置备件比例,计算资产残值也需要电池寿命衰减分析作为参考。目前研究锂电池衰减一般会从三个维度去分析,首先是从电池内部电化学反应的角度去分析整个衰减过程是如何演化的。其次是在实验室对电池进行不同的工况试验,通过对电池电压、内阻等外特性变化来分析。还有就是通过收集大量在车辆端实际运行的数据,再利用机器学习技术来分析。
由此我想到在自然语言处理领域也有过类似案例,在最初的语言研究过程中语言学家占据主要地位,当时普遍认为若需要让计算机进行语言翻译或者语言理解,前提是先要让计算机理解句子的意思。因此研究人员把研究重点放在了语法分析上,希望让计算机通过语法分析树的分解算法进行语言理解。这种方式和试图通过了解电化学反应机理来评估电池寿命的思路是相似的。而由于模型复杂程度高、随机因素干扰大等原因无法得到理想效果。
在2000年后Google在语言处理领域投入大量的精力,并且采取了统计分析的技术路线取代了语言规则分析的路线。计算机完全不必理解语言的本意,而是通过网络上大量的样本统计形成一套与上下文相关的数学模型(即单词可能有多个含义,通过上下文的统计分析来确定每种含义在该句子中的可能性概率),最终取得了突破性的进展。
随着电动汽车市场占有量的上升,采用机器学习的技术路线或许能更好的解决寿命评估问题。当然这并非是说研究电池电化学反应机理没有必要,相反了解电池衰减机理和电池外特性变化是构建数学模型和实现机器学习基础。因此本文尝试梳理锂离子电池的衰减机理,从而能更好的理解和想象电池。特别是当数据分析结果与假设存在差异的时候,如果对电池反应机理有一定的概念,那么就能更准确的提出新的假设。
1.锂电池工作原理
1)正极和负极
锂电池的正极是将正极材料(如LFP、NCM)涂布在铝箔(集流体)上,负极是将负极材料(如石墨、LTO)涂布在铜箔(集流体)上。一般情况下电池是根据正极材料来命名,所以一般称三元电池或磷酸铁锂电池;而钛酸锂电池中LTO是负极材料,因此这算是以负极材料命名电池的特例。在翻阅国外文献的时候发现文中常将正极材料称为阴极(Cathode),将负极材料称为阳极(Anode),一开始并不是非常理解,因为我们一般认为,发生还原反应的电极是阴极,发生氧化反应的电极是阳极;而电池在放电和充电切换的过程中阴阳极也随之在变化。后来慢慢有点想明白,这个定义应该指的是没有外部能量影响的条件下的情况,所以以放电状态下的反应情况来确定电池的阴阳极。
2)隔膜
正负极之间有一层隔膜(Separator),使正负极隔离,防止电子穿过,同时又能使锂离子顺利通过。
3)电解液
电解液在电池中起到传导锂离子的作用。在电池放电的过程中,Li+从负极穿过隔膜到正极,电子则从负极经过外部电路回到正极形成了电流。电池的充电过程则刚好相反。在电池化成过程中,电解液会和电极材料(主要是负极)发生界面反应,消耗了一部分Li+,并在电极材料表面形成钝化层,称为“固态电解质界面膜”SEI(Solidelectrolyteinterface)。SEI是电子绝缘体,却又是Li+的导体。稳定的SEI的形成有利于Li+自由地嵌入和脱出。
2.定义电池衰减
电池的衰减可以分为两方面分析,一方面是性能上的,另一方面是安全性上的。
1)性能衰减
电动汽车在经过一定时间的使用后续航里程会有所下降,加速性能的衰减也可能被感受到。这主要可以从容量的衰减、内阻的增加、以及电池自放电的增大几个方面去分析。
2)安全性衰减
安全性的衰减相对而言就比较难比察觉。有可能电池已经出现了机械形变,或者发生内短路的概率增大了,以及存在漏液的风险。
因此接下去我们可以找到什么影响了容量的减少、内阻增加由哪些因素引起、电池形变产生过程、以及导致内短路发生的因素这样的问题来理解电池的衰减过程。
为了便于理解,我突然想到一个比喻:我们可以把正极比作“工厂”,负极比作“公寓”,Li+比作“员工”。那么放电就是员工从公寓去工厂上班释放能量的过程,充电就是员工下班回公寓休息补充能量的过程。从这个比喻中我们可以想象无论是工厂岗位的减少,或是公寓的年久失修,以及员工的流失,最终都会导致了整体的衰减。
那么我们可以初步通过这个类比模型来理解电池衰减的可能原因:
性能衰减:
1.容量衰减:相当于城市的生产总值下降了,可能是就业岗位减少,居住成本太高或居住环境劣化,以及就业人口流失。对应的也就是正负极活性材料减少和可移动的Li+减少。
2.内阻增加:相当于城市的工作效率低下,可能是政府行政阻力大,或是交通系统瘫痪导致员工上下班成本高,以及城市规划不合理居住地和工作地越来越远。也就是电池欧姆阻抗增大,导电性能下降,Li+运动路径劣化。
3.自放电大:相当于城市失业人口比例上升,占用了城市的资源却没有创造效益。也就是Li+异常损耗,电池内部微短路。
安全性衰减:
1.内短路风险增大:隔膜受损破裂或受热收缩。
2.机械形变和漏液:电池内部产气压力导致电池变形破损。
通过上面的描述我们大致可以想象出导致电池衰减的原因,那么又是哪些具体的应用场景导致了上述的情况发生呢?本篇主要来梳理一下电池的具体衰减场景和影响因素。
1.正负极材料脱落和老化
电池在不断的充放电过程中正负极会不断进行收缩和膨胀变化,不可避免的会产生正负极材料在集流体上的脱落,使得可嵌入Li+的晶格数量下降,从而影响了电池容量。下图是磷酸铁锂正极材料产生反应的拓扑变化,在充放电过程中正极材料发生LiFePo4和FePo4的转化,由于整体的结构稳定性比较好,不容易发生晶格塌陷的情况。但有些正极材料(如LCO)结构容易被破坏,导致正极材料的活性物质损失。
2.SEI膜分解与再生成
在电池原理的介绍中提到电解液在化成过程中会和负极发生界面反应,消耗一部分Li+形成SEI膜;这个SEI膜能起到保护电极的作用,理论上如果SEI膜足够稳定就能够防止电解液与负极材料继续发生反应。但在实际中SEI膜或多或少会不断的分解和再生成,在这个过程中就会造成正负极材料、电解液、以及Li+的持续损失(这也是导致电池自放电的部分原因)。并且SEI膜的不断增厚会造成负极表面扩散孔道的堵塞,不利于Li+的扩散,这也就导致了电池内阻的不断增大。
3.产生析锂(过流、低温)
当电池超过可承受的倍率电流运行的时候,大量的Li+来不及嵌入电极,导致在电极表面大量的Li+堆积,最终在电极表面形成了金属锂枝晶。这种情况尤其容易出现在低温充电过程中,一方面在低温环境下离子移动嵌入速度本身就会大幅下降,另一方面Li+从正极脱出的速度比在负极嵌入的速度更快,因此在低温环境控制充电电流尤为重要。除此之外电解液不均匀,水含量超标等原因等可能导致析锂问题。
4.隔膜损伤(高温)
首先电池电极表面一旦存在金属锂枝晶,则就有可能刺穿隔膜,引发正负极的短路。除此之外隔膜在高温环境下会分解和收缩,这种情况下也会引起短路。而一旦正负极短路,那么电子就无需通过外部电路即可到达正极,那么电池的整个电化学反应就失控了,产生过流、过温的现象从而进一步损伤电池,并引起热失控等更严重的问题。
5.电解液的损耗和分解(过压、欠压)
前面提到SEI膜的生成过程就会损失一部分的电解液,同时电池电解液的配方是根据该电池的电压工作区间确定,因此不合理的使用电池(过压欠压)也会造成电解液的分解。例如当电池过充时,即正极材料化合价升高(过多失去电子),此时正极材料还原性很强,就容易通过与电解液发生反应来得到电子,反应不仅消耗了电解液和正极材料,同时还会生成气体引发机械形变和漏液的隐患。
6.集流体氧化
集流体长期和电解液接触过程中会被氧化,正集流体表面形成的氧化铝,负集流体表面形成氧化铜;随着氧化程度的加剧,电子导通性能就收到影响,相当于电池的欧姆阻抗随着充放电循环会不断的增大。
通过上面的分析我简单画了一张电池的寿命影响因素图:
确保电池长寿命安全稳定的工作的前提在于始终保持电化学反应的可控和有序。而一旦超过了合理的使用条件,发生过压、欠压、过温、过流、机械损伤等情况时,电池的衰减将显著加剧,并且引发更为严重的安全问题。