低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

基于单片机的智能太阳能路灯控制系统设计方案

钜大LARGE  |  点击量:1751次  |  2019年12月30日  

摘要:随着世界能源危机日益严重,利用太阳能成为解决能源问题的一大途径,在此背景下开发智能太阳能路灯意义重大。本文介绍了智能太阳能路灯系统的组成及工作原理,采用LPC935单片机作为主控制器,结合密封铅酸蓄电池充电专用芯片UC3906,实现了对密封铅酸蓄电池最佳充电所需的全部控制和检测功能,延长了系统的使用寿命。通过热释电红外、微波双鉴传感器技术及以无线通讯技术,实现了红外微波探测、相邻路灯间的无线通讯以及主副灯的智能化切换,达到了节能减排的效果。


随着科学技术的迅速发展,世界能源危机日益严重,利用常规能源已不能适应世界经济快速增长的需要,开发和利用新能源越来越引起各国的重视。太阳能源本身的安全可靠、无噪声、无污染和可再生性的特点,加之现今光伏技术的逐渐成熟,利用光伏发电成为解决能源问题的一大途经。


智能太阳能路灯是利用太阳能组件的光生伏特效应,将光能转换为电能,并储存在蓄电池中供负载使用,它是集太阳能光伏技术、蓄电池技术、照明光源技术于一体的新兴技术。太阳能路灯控制器是应用于太阳能光伏系统中,协调太阳能电池板、蓄电池、负载的工作,使整个太阳能光伏系统高效,安全的运作。


1智能太阳能路灯系统总体方案


智能太阳能路灯系统的由太阳能电池板、蓄电池、LED灯(主灯、副灯)和控制器组成(如图1所示)。白天太阳能电池板接受太阳辐射能并转化为电能输出,经过充电控制电路储存在蓄电池中;晚间当光线照度降低时,控制器使副灯点亮,进行指示性照明。当控制器监测到有人经过时控制器同时点亮主灯和副灯,同时和相邻前后的灯通讯,控制邻灯主灯和副灯同时点亮,保证行人在该路段的照明。控制器检测到蓄电池充电或放电超出一定范围时,控制器切断充放电回路,保证电池不被损坏。遇到连续阴雨天季节可切换成市电照明,避免蓄电池长期亏电。


图1智能太阳能路灯系统总体方案


2控制系统硬件电路图设计


系统硬件是基于P89PLC935单片机作为主控制器的基础,设计出符合功能要求的各个子模块,原理见图2。


(1)控制器


控制器选用P89LPC935单片机,它是一款单片封装的微控制器,适合于本系统要求的高集成度、底成本的场合,可以满足多方面的性能要求,LPC935采用了高性能的处理器结构,指令执行时间只需2-4个时钟周期,6倍于标准80C51,同时,LPC935集成了许多系统级的功能,这样可大大减少元件的数目,它的8KBROM能满足本系统程序存储器的要求,不需用扩展EPROM。


该单片机内置的2个4路输入的8位A/D转换器,不需再单独选用A/D转换器,简化了外围硬件电路,P89LPC935内部的看门狗电路及低电压掉电检测可在电源故障和受到强电磁干扰时使系统可靠复位,提高了系统的安全可靠性。


(2)环境照度的检测


本系统采用光敏开关检测环境照度。环境照度检测是整个路灯的总开关,只有在夜晚,环境照度较低的情况下,主副灯、人体感应单元及相应的控制电路开始工作,白天均不工作。白天时光敏电阻阻值小,比较器LM358负端电压高于正端电压,比较器输出低电平,单片机接收到低电平,屏蔽各种通讯和感应信号,夜晚光敏电阻阻值大,比较器负端电压小于正端,输出高电平,单片机控制接收感应信号和通讯信号。


(3)人体感应单元


本系统采用被动式热释电红外、微波双鉴传感器作为人体感应单元。由于人体都有恒定的体温,一般在36.5℃,所以会发出特定波长,一般是10μm左右的红外线。人体发射的10um左右的红外线通过菲涅尔滤光片增强后聚集到热释电元件上,热释电元件接受到人体红外辐射温度发生变化时失去电荷平衡,向外释放电荷,经后续电路检测处理并产生报警信号[2],但是,热气流,暖风也会造成被动式热释电红外探头发出错误信号,造成和相邻灯之间的误通讯。为了避免误通讯,同时采用微波传感技术,借助微波多普勒效应探测移动目标。使用热释电红外、微波双鉴传感器克服了单一技术的缺陷,解决了误通讯的问题,此传感器的模拟信号直接连接P0.0(内置A/D),不需要外接A/D转换电路。


钜大锂电,22年专注锂电池定制

钜大核心技术能力