钜大LARGE | 点击量:1707次 | 2020年05月20日
利用数字电位计实现开关电源的输出电压调整
将典型开关电源输出电压(图1)与内部基准电压进行比较,可看到差别集中在脉宽调制器(pWM)。pWM将斜坡与
图2.使用数字电位计调整DC-DC转换器输出电压,组成可变反馈电阻
控制误差放大器引脚电压,便可调整输出电压。这可以通过使用DAC,或者使用数字电位计,以外部方式实现,如图2所示。某些电压调节器允许使用串行接口(比如pMBus、I2C或SpI)在内部控制反馈电压。表1比较了三种方法的调整能力和功耗。
数字电位计(或称digipOT)工作方式与传统电位计相似,但用电子开关和数字信号代替机械游标进行操作,如图3所示。digipOT将一串小数值电阻与位于每两个电阻交叉点上的电子开关串联。digipOT分辨率与电阻网络中的位控制节点量有关。控制节点的数量越高,分辨率越高。
图3.显示电子开关的64位数字电位计。同一时间只能闭合一个电子开关,该开关决定电阻比。
某些数字电位计采用非易失性存储器,因此可在测试期间编程输出电源。相比其他两种方式,这项易于使用的特性具有极大的优势。
线性化传递函数
反馈电阻R1和R2的比值决定了开关电源输出电压。
其中:
VFB=内部基准电压
VOUT=输出电压
R1=连接输出的反馈电阻
R2=接地反馈电阻
以数字电位计代替R1和R2时,需考虑一些问题。数字电位计内部有两个电阻串(RAW和RWB),如图4所示。
图4.数字电位计电阻命名法
两串电阻互补。
其中:
RAB=端到端电阻或标称值
以RAW和RWB代替R1和R2可实现对数传递函数。数字码和输出电压之间的非线性关系降低了低端分辨率。图5显示了这个取自数字电位计的对数传递函数。
图5.以数字电位计代替反馈电阻后得到的对数传递函数
图6.在可变电阻模式下使用数字电位计
有多种方法可以克服此分辨率问题。比较常用的方法是在可变电阻模式下使用数字电位计(如图6所示);或者将电阻与电位计串联(如图7所示)。
图7.在电位计模式下线性化
最小化误差
由于电阻公差,将数字电位计与外部电阻一同使用可能导致失配问题。精密器件可能具有1%的电阻公差,但大部分数字电位计只能达到20%的电阻公差。
这种情况下,可通过串并联电阻组合减少失配(如图8和图9所示);其缺点是动态范围也会缩小。
图8.可变电阻和串联电阻
图9.电位计模式
在可变电阻模式下,串联电阻必须足够高,才能忽略数字电位计的公差,即R2≥10RAB。在电位计模式下,并联电阻必须足够小,即R3≤RAB/10。
使用串并联组合对电位计进行线性化可能十分复杂,如图10中的等效电路所示。
图10.最终Y-Δ变换
其中:
反馈输入引脚通常具有较高的阻抗,因此R6的影响可以忽略。
开关调节器工作在较高频率下(通常高于1MHz),因而允许使用小数值外部元件。在最差情况下,它必须为动态负载供电,因此反馈电阻网络必须供应足够的带宽,才能精确跟踪输出电压。由于存在寄生内部开关电容,数字电位计可用作低通
图11.假如反馈电阻网络无法供应足够的带宽来精确跟踪输出电压,则杂散电容导致的寄生效应可能带来麻烦。
克服这一限制的一种简单方法,是将一个电容并联放置在输出与反馈网络之间(如图12所示),以便降低高频阻抗,并最大程度地缩短振荡时间。
图12.并联电容降低高频阻抗,最大程度地减少振荡
更简单的解决方法
ADI公司的AD5141digipOT克服了其他数字电位计的某些问题。它供应:
●非易失性256位调整
●10k和100k电阻选项
●8%最大电阻公差
●±6mA游标电流
●35ppm/°C温度系数
●3MHz带宽
●<75μS启动时间
●线性增益设置模式
●单电源及双电源供电
●1.8V至5.5V独立逻辑电源
●-40°C至+125°C工作温度
●3mm3mmLFCSp封装
●4kVESD保护
图13.AD5141功能框图
AD5141(图13)可作为真可变电阻使用,用于处理端电压范围为VSS 低电阻公差和低标称温度系数简化了开环应用和要公差匹配的应用。 AD5141的重要优势是采用了最新的专利功能,称为“线性增益设置模式”。该模式允许对数字电位计端子RAW和RWB两串电阻之间的电阻值独立编程,使得: 采用这种模式,则无需通过外部电阻实现线性开关电源电压调整;另外,电阻公差也可以忽略了,同时传递函数总误差仅与内部电阻串失配有关,而后者通常不足1%,并具有低温漂特性。 每一个电阻串都有一个对应的EEpROM位置,因此上电时可载入每一个电阻串的独立值。此外,器件还为快速反馈环路供应了高达3MHz的带宽。 宽带宽和低总谐波失真(THD)确保关于交流信号具有最佳性能,适合滤波器设计。在电阻阵列末端的游标电阻低至40,允许进行引脚到引脚连接。 游标电阻值可通过一个SpI/I2C兼容数字接口设置,也可利用该接口回读游标寄存器和EEpROM内容。 可利用I2C或SpI接口(使用DIS引脚便可通过硬件来加以选择)设置任意位,实现针对RDAC寄存器的编程。找到所需的游标位置后,可以将该值存储在EEpROM存储器中。以后上电时游标位置始终会恢复到该位置。存储EEpROM数据大约要18ms;在这段时间内,器件会锁定并不会应答任何新命令,因而可防止出现任何更改。快速启动时间(<75μS)保证了完成电源序列后可快速刷新寄存器。
上一篇:智能高频开关电源系统的性能特点
下一篇:LED开关电源电路保护的设计方法