钜大LARGE | 点击量:1099次 | 2020年06月05日
一种锂离子电池组均衡充电管理电路设计
随着国际原油价格飞涨,各种新型能源的研究成为公众关注的焦点。电能作为动力能源已经在各种车辆上得到广泛应用。锂离子电池以具有较高的能量质量比和能量体积比,无记忆效应,可重复充电次数多,使用寿命较长等优点成为动力电能的首选。
作为一种新型动力技术,锂离子电池在使用中必须串联才能达到使用电压的需求,单体性能的参差不齐并不全缘于电池生产技术问题,即使每只电池出厂时电压,内阻完全一致,使用一段时间以后,也会出现差异,这使得解决动力锂电池充电技术问题成为迫切要解决的技术问题。本设计在充分考虑工业成本控制和稳定性要求的基础上,采用能耗型部分分流法对动力锂离子电池充电进行均衡管理,改善了电池组充电的不平衡性,提高了工作性能。
1锂离子电池组充电方法选择
1.1单节锂离子电池充电要求
对单节锂离子电池的充电要求(GB/T18287-2000)首先是恒流充电,即电流一定,而电池电压随着充电过程逐步升高,当电池端电压达到4.2V(4.1V),改恒流充电为恒压充电,即电压一定,电流根据电芯的饱和程度,随着充电过程的继续逐步减小,当减小到10mA时,认为充电终止,充电曲线如图1所示。
图1锂离子电池充电曲线
1.2锂离子电池组充电特性
在动力锂电池组中由于各单体电池之间存在不一致性。持续的充放电循环导致的差异,将使某些单体电池的容量加速衰减,串联电池组的容量是由单体电池的最小容量决定的,因此这些差异将使电池组的使用寿命缩短。造成这种不平衡的重要原因有:
●电池制作过程中,由于工艺等原因,同批次电池的容量、内阻等存在差异;
●电池自放电率的不同,经长时间积累,造成电池容量的差异;
●电池使用过程中,使用环境如温度、电路板的差异,导致电池容量的不平衡。
1.3充电方法选择
为了减小不平衡性对锂离子电池组的影响,在充电过程中,要使用均衡电路。
目前关于锂离子电池组进行均衡管理的方法重要有2种,能耗型和回馈型。能耗型是指给各个单体电池供应并联支路,将电压过高的单体电池通过分流转移电能达到均衡目的。回馈型是指通过能量转换器将单体之间的偏差能量馈送回电池组或电池组中的某些单体。
理论上,当忽略转换效率时,回馈不消耗能量,可实现动态均衡。但由于回馈型设计控制方法复杂,制造成本较高,本充电器采用能耗型设计。
能耗型按能量回路处理方式又可以分为断流和分流。断流指在监控单体电压变化的基础上,满足一定条件时把单体电池的充电回路断开,充电电流完全通过旁路电阻。通过机械触点或电力电子部件组成的开关矩阵,动态改变电池组内单体之间的连接结构。而分流并不断开工作回路,而是给每只电池新增一个旁路电阻,当某单体电池高于组内其他电池时,将充电电流的全部或一部分导入旁路电阻。从而实现对各个单体电池的均衡充电。由于动力锂离子电池组功率较大,在综合考虑充电效率,热管理等方面因素之后,我们使用部分分流法为充电器的设计方法。
2系统设计及分析
2.1系统整体结构
如图2系统框图所示,工频交流电通过开关电源转化为18V/5A的直流电输出给升压电路,升压电路根据CpU的控制信号为电池组充电供应一定的充电电流,电压监控电路将电池的实时电压情况反馈给CpU,CpU通过升压电路实现对电池组整体充电电压、电流的控制。通过均衡电路实现各个单体电池充电速率调整,以保证整个电池组充电的一致性。
图2系统整体框图
2.2升压电路
电能的输入转化环节由开关电源电路和调压电路两部分组成。开关电源将输入的工频交流电转化为18V/5A直流电输出。由于当前开关电源技术已经相当成熟,在此就不再赘述。
升压电路的用途是将开关电源输出的直流电调节转化为电池组充电所要求的电压、电流,并能够根据充电状态对输出电压、电流进行实时调节。
升压电路如图3所示。
图3升压电路
其中R1、R2、Q1构成电源反接保护电路,Q5是整个升压电路的开关,Q2、Q4、U1构成场效应管Q3驱动级电路,Q3、L1、D1、C4、C5构成BOOST升压调节电路,R9、R10、C6为电压采样电路。
在充电器正常工作时,开关电源的正负极输出分别接到DC+,DC-,开关管Q5关断。CpU根据电池监控电路反馈的电压计算出的pWM占空比,输出相应的调制信号。pWM调制信号经过驱动级放大调整,控制Q3开关状态,以出现所要的输出电压。
由于稳态条件下,电感两端电压在一个开关周期内的平均值为零。可得:
其中,UL为电感两端电压在一个开关周期内的平均值;U0为输出电压;Ui为输入电压;T为开关周期;ton为Q3处于通态的时间;toff为Q3处于断态的时间。令UL=0,在电感电流持续的工作过程中有:
其中因此只要调节pWM输出的占空比,就能有效地控制电池的充电电压。
由于单个锂离子电池的电压过小,为得到更大的工作电压,一般要将锂离子电池串联使用。电池组充电过程中,要对每个电池的电压情况进行实时监控,以保证每个电池工作在正常工作状态下,防止发生过充现象,损坏锂离子电池。
串联锂离子电池电池组中,各个锂离子电池的基准电平不同。假设电池组中的电池电压分别为a1,a2,?,则对地第一节电池电压为a1,第二节电池电压为a1+a2,以此类推。
在电压监控中我们要对各个电池的实时电压进行比较,就必须设计一定的电路,将各个电池的电压转化到同一基准上。采取光耦隔离取样的方法可以实现电平转化,考虑到线性光耦价格是普通光耦的10倍以上,出于工程中成本控制要,将普通光耦线性化连接以实现电压的采集和实时监控。
在如图4所示的单体电池电压监控电路中,使用了同一型号同一批次的两个普通光耦器件和两个运算放大器。两个光耦中,一个用于输出,另外一个用于反馈。反馈用来补偿发光二极管时间、温度特性上的非线性。
图4电压监控电路
在图4中:
其中:K1,K2为电路中光耦U1,U2的电流传输比。
由电路可知:
其中Vbat为电池两端电压。由于选用同一型号同一批次的光耦,所以电流传输比近似相等,即K1=K2。
所以,有:
从式(5)可知,该测量电路的电压增益只与电阻R1,R2的阻值有关,与光耦的电流传输参数等无关,从而实现了对电压信号的线性隔离。经如图所示电路转化后电池电压被转化为具有统一参考地的输出电压Vout。
2.4部分分流控制电路
如图5分流控制电路所示,充电过程中,当某一单体电压明显高于组内其他电池时,CpU将控制端口拉高,则Q1导通,Q2基极电位被拉低,Q2导通,部分电能从旁路电阻R4分流,降低该电池充电速率,从而实现电池组各单体电池充电速率同步。
其中
下一篇:后锂离子电池时代的突破点