低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

详解固态电池的技术路线以及技术瓶颈

钜大LARGE  |  点击量:3545次  |  2020年10月28日  

固态电池的技术路线


固态电池领域有不同的技术路线,固体电解质可大致分为三类:无机电解质、固态聚合物电解质(SPE,SolidPolymerElectrolyte)、复合电解质。目前较多业者投入研究的材料包括固态聚合物、硫化物(Sulfide)、氧化物(Oxide)、薄膜(ThinFilm)等。像是戴森、苹果各自收购的固态电池厂Sakti3和InfinitePowerSolutions,皆以薄膜为主,但制程复杂,量产难度高,先前市场传出戴森、苹果有意放弃,故现阶段发展状况不太明朗,而丰田、松下(Panasonic)、三星、宝马、宁德时代投入硫化物电解质,辉能、索尼则是聚焦在氧化物。


苹果从2012年就开始积极布局固态电池及充电技术的专利,2013年收购了InfinitePowerSolutions。近两三年汽车厂布局固态电池的消息大幅浮上台面,像是丰田对外宣示将在2022年对外销售搭载固态电池的电动汽车。另外,大众汽车(Volkswagen)投资了由《麻省理工科技评论》TR35青年创业家JagdeepSingh参与创立的固态电池初创公司QuantumScape,去年六月加码投资,并取得QuantumScape一席董事,预计在2025年建立固态锂离子电池产线。


而过去的电池大国日本,陆续舍弃掉锂离子电池后,已经将研究重点转向固态电池,日本科学技术振兴机构(JST)、日本新能源产业技术开发机构(NEDO)都积极推动,这些动态让外界开始关注这项技术。


固态电池的技术瓶颈


目前,包括韩国三星、日本丰田和我国宁德时代在内的众多电池和汽车厂商,都加大了固态电池研发投入,已有部分电池进入装车测试阶段。尽管前景可期,但由于技术和工艺上的种种问题,发展固态电池的道路绝非一帆风顺。


首先,高效的电解质材料体系缺乏。目前固态电池材料发展很快,但综合应用较为欠缺。


作为固态电池的核心材料,目前在固体锂离子导体的单一指标上已有所突破,但综合性能尚不能满足大规模储能需求。现今固态电池采用的固态电解质普遍存在性能短板,距离高性能锂离子电池系统的要求仍有不小的差距。


1、固态电解质和电极的界面处理也是固态电池目前面对的一大难题。


在固体电解质中锂离子传输阻抗很大,与电极接触的刚性界面接触面积小,在充放电过程中电解质体积的变化容易破坏界面的稳定。


2、在固态锂离子电池中,除了电解质和电极之间的界面,电极内部还存在复杂的多级界面,电化学以及形变等因素都会导致接触失效影响电池性能。


再次,长期使用时稳定性不理想也是长寿命储能固态电池发展的瓶颈。固态电池在服役过程中结构与界面会随时间发生退化,但退化对电池综合性能的影响机制尚不明确,难以实现长效应用。


所以,构建高性能固态电池要从两方面入手,一是构建高性能的固态电解质,二是提高界面的相容性和稳定性。


从某种意义上讲,汽车的演变历史就是电池的进化过程。若论起源,电动汽车也已经有了180多年的历史,出现时间与燃油车不相上下。可铅酸电池、镍氢电池均未使电动汽车的地位有所突破。直至磷酸铁锂离子电池、三元锂离子电池的升级才使得部分消费者逐步接受电动汽车。


钜大锂电,22年专注锂电池定制

钜大核心技术能力