低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

快充对电池各部分有什么要求

钜大LARGE  |  点击量:2770次  |  2021年03月25日  

快充,对电池各部分的要求


关于电池来说,假如要提升功率性能,要在电池整体的各个环节中都下功夫,重要包括正极、负极、电解液、隔膜和结构设计等。


正极


实际上,各种正极材料几乎都可以用来制造快充型电池,重要要保证的性能包括电导(减少内阻)、扩散(保证反应动力学)、寿命(不要解释)、安全(不要解释)、适当的加工性能(比表面积不可太大,减少副反应,为安全服务)。


当然,关于每种具体材料要解决的问题可能有所差异,但是我们一般常见的正极材料都可以通过一系列的优化来满足这些要求,但是不同材料也有所差别:

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

A、磷酸铁锂可能更侧重于解决电导、低温方面的问题。进行碳包覆,适度纳米化(注意,是适度,绝对不是越细越好的简单逻辑),在颗粒表面处理形成离子导体都是最为典型的策略。


B、三元材料本身电导已经比较好,但是其反应活性太高,因此三元材料少有进行纳米化的工作(纳米化可不是什么万金油式的材料性能提升的解药,尤其是在电池领域中有时还有好多反用途),更多在重视安全性和抑制(与电解液的)副反应,毕竟目前三元材料的一大命门就在于安全,近来的电池安全事故频发也对此方面提出了更高的要求。


C、锰酸锂是则关于寿命更为看重,目前市面上也有不少锰酸锂系的快充电池。


负极


锂离子电池充电的时候,锂向负极迁移。而快充大电流带来的过高电位会导致负极电位更负,此时负极迅速接纳锂的压力会变大,生成锂枝晶的倾向会变大,因此快充时负极不仅要满足锂扩散的动力学要求,更要解决锂枝晶生成倾向加剧带来的安全性问题,所以快充电芯实际上重要的技术难点为锂离子在负极的嵌入。

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

A、目前市场上占有统治地位的负极材料仍然是石墨(占市场份额的90%左右),根本原因无他便宜,以及石墨综合的加工性能、能量密度方面都比较优秀,缺点相对较少。石墨负极当然也有问题,其表面关于电解液较为敏感,锂的嵌入反应带有强的方向性,因此进行石墨表面处理,提高其结构稳定性,促进锂离子在基上的扩散是重要要努力的方向。


B、硬碳和软碳类材料近年来也有不少的发展:硬碳材料嵌锂电位高,材料中有微孔因此反应动力学性能良好;而软碳材料与电解液相容性好,MCMB材料也很有代表性,只是硬软碳材料普遍效率偏低,成本较高(而且想像石墨相同便宜恐怕从工业角度上看希望不大),因此目前用量远不及石墨,更多用在一些特种电池上。


C、钛酸锂如何?简单说一下:钛酸锂的优点是功率密度高,较安全,缺点也明显,能量密度很低,按Wh计算成本很高。因此关于钛酸锂离子电池的观点是一种有用的在特定场合下有优势的技术,但是关于很多对成本、续航里程要求较高的场合并不太适用。


隔膜


关于功率型电池,大电流工作对其安全、寿命上供应了更高的要求。隔膜涂层技术是绕不开的,陶瓷涂层隔膜因为其高安全、可以消耗电解液中杂质等特性正在迅速推开,尤其关于三元电池安全性的提升效果格外显著。


陶瓷隔膜目前重要使用的体系是把氧化铝颗粒涂布在传统隔膜表面,比较新颖的做法是将固态电解质纤维涂在隔膜上,这样的隔膜的内阻更低,纤维关于隔膜的力学支撑效果更优,而且在服役过程中其堵塞隔膜孔的倾向更低。


涂层以后的隔膜,稳定性好,即使温度比较高,也不容易收缩变形导致短路,清华大学材料学院南策文院士课题组技术支持的江苏清陶能源公司在此方面就有一些代表性的工作。


电解液


电解液关于快充锂离子电池的性能影响很大。要保证电池在快充大电流下的稳定和安全性,此时电解液要满足以下几个特性:A)不能分解,B)导电率要高,C)对正负极材料是惰性的,不能反应或溶解。


假如要达到这几个要求,关键要用到添加剂和功能电解质。比如三元快充电池的安全受其影响很大,必须向其中加入各种抗高温类、阻燃类、防过充电类的添加剂保护,才能一定程度上提高其安全性。而钛酸锂离子电池的老大难问题,高温胀气,也得靠高温功能型电解液改善。

钜大锂电,22年专注锂电池定制

钜大核心技术能力