低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

蓄锂电池荷电状态闭环动态估算模型

钜大LARGE  |  点击量:732次  |  2021年04月29日  

目前,由于铅酸蓄电池的经济性和技术成熟性,使其成为丰要的储能设备。为了达到优化蓄电池电力系统效率的目的,对蓄电池容量的实时监控必不可少。而由于蓄电池的非线性特性,反映其容量的关键参数荷电状态(SOC),作为电池的内特性不可能直接进行测量。SOC数值只能使用工作电压、电流等直接测量得到的外特性参数估算获得。


本文使用最优估计理论建立蓄电池的动态工作模型,实现蓄电池SOC的实时估算。该动态模型被划分为两个部分:第一部分是蓄电池数学解析描述,即对蓄电池工作特性的开环描述;第二部分是加入动态过程的描述,实现蓄电池工作特性的闭环描述。关于蓄电池的解析模型,较为通用的方式是建立描述输入输出之间关系的数学模型,通过实验来确定模型的某些参数,或者模型内部的某些状态量。然而,仅仅使用开环描述模型得到动态输出与实际的动态情况常常存在偏差,这种误差重要归咎于测量过程中的异常偏差。当这种误差出现时,只有闭环描述模型才能根据这些误差对模型进行调整。本文使用基于电化学理论的安时模型实现电池数学解析描述,而动态过程描述则使用带有自矫正能力的扩展卡尔曼滤波算法。


1基于电化学的安时模型


普通的安时计量法使用下式估算蓄电池的SOC。


式中:s(0)为初始时刻的蓄电池SOC数值,若从充满开始放电,其值可以设为1;s(t)为t时刻的SOC实时值;Q为蓄电池的标称容量;η为库仑因子。通过调整库仑因子可以满足不同放电电流下的SOC计算。实际应用中,库仑因子多通过试验确定为常数或是有关放电电流I的函数。但是,蓄电池的标称容量不等于实际容量,且实际容量在使用中也会衰减。同时,确定库仑因子过程中出现的误差,也会影响到安时估算的精度。为了对上述问题进行改进,提高安时法SOC估算的精度。本文使用电化学理论,构造新的基于安时法的SOC估算模型。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

1.1电解液活性物质浓度损失函数


蓄电池内部电解液所含有的活性物质,其浓度损失百分比可以表示为:


式中:C*为初始浓度;C(t)为电解液中t时刻活性物质的浓度;时间t的取值范围[0,L],L为放电总时间。


当使用蓄电池一维的电化学模型,根据电化动力学理论,最终可以得到电解液活性物质浓度损失百分比函数:


式中:v为反应中电子的数目;F为法拉利常数;A为电极的面积;D为扩散系数。

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

1.2电化学安时模型


由于电解液的活性物质浓度和电池的SOC成正比的关系,设比例系数为M,可以直接得出电池t时刻的SOC解析表达式:


若考虑电流值为I的恒流放电过程,放电截止时ρ(L)1,则可以得到以下等式:


关于给定的恒流放电集合{I*,*=1,2,…,n},可以使用最小二乘法得到最优的α、β参数,其中:


得到模型参数之后,为方便模型的实际应用,使用积分的矩形近似方法改写(4)式,用以获得离散时间上的近似递推模型,在间隔周期△t足够小的情况下,递推模型可以写为:


式中:sk表示k时刻的电池SOC的实时值;Ik表示k时刻的电池电流。比较式(1)的标准安时估算模型,可以发现α等于电池的标称容量Q,库仑因子则由β和放电时间k△t决定。从电化学角度分析,表达式(7)的括号中的第二项表示蓄电池中无法使用的总电量,当β数值新增的时候,第二项趋向于零。因此,较大的β数值意味着蓄电池可以被看作理想储能元件,所有充电电量都可以完全通过放电过程释放。这是因为大的β数值表明更快的扩散效应,蓄电池电解液中的活性物质可以更快的到达电极的表面。反之,小的β数值表明蓄电池储能损失大,大量的充电电量无法在放电过程中释放。


2扩展卡尔曼滤波闭环估算模型


改进安时模型能够较好地反应电池的动态特性,但这种蓄电池SOC计算方式只是一种开路的估算方式,存在着传统安时计量法的缺点,即对电流测量中的测量偏差十分敏感,某一个时刻出现的测量偏差,可以影响到该时刻后所有的SOC估算值。假如将估算模型构造成闭环反馈的模式,则可以自动修正电流测量中的偏差,给出正确的SOC估算值。在(7)式递推模型的基础上,可以使用卡尔曼滤波器方法构造出具有闭环特性的电池SOC估算模型。


首先将(7)式作为蓄电池SOC估算系统的状态方程,蓄电池SOC为状态量,蓄电池的工作电流作为系统的输入。然后,利用蓄电池的工作电压构造系统的观测方程。


蓄电池负载电压与当前时刻蓄电池的开路电压(Vcc)之间的关系是:


式中:R为蓄电池内阻。又由于Vcc和内阻都与其SOC有着直接的关系,故可以使用有关sk的函数,得到卡尔曼滤波算法中的观测方程:


式中:uk表示k时刻的电池端电压,则(7)式和(9)式组成了蓄电池SOC估算的卡尔曼滤波系统。确定(9)式的具体过程将在实验部分详细分析。

钜大锂电,22年专注锂电池定制

钜大核心技术能力