低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

电池剩余电量SOC估算方法,电池系统SOC可用范围

钜大LARGE  |  点击量:881次  |  2023年09月06日  

锂离子电池剩余电量SOC估算方法,电池系统SOC可用范围。荷电状态又叫剩余电量,SOC是反应锂离子电池包内当前电量占总体可用容量百分比的一个参数。SOC即电池的剩余电量,也称为荷电状态。表示电池使用或长期搁置一段时间后,其剩余容量与总的可用容量的比值,常用百分数表示。


对电池SOC的准确估算,既是电动汽车估算续航里程最基本的要求,又是提升电池利用效率和安全性能的基本保证。


锂离子电池剩余电量SOC估算方法


开路电压法:先离线测量得到不同温度不同SOC下的开路电压值,形成表格。电池系统装车以后,每当出现停止供电状态,就可以调用表格数据,根据测量得到的开路电压判断电池荷电状态。


安时积分法:实时测量锂离子电池包主回路电流,并将其对时间积分,充电为负放电为正。放电过程用初始电量减去积分结果得到当前电量;充电过程用初始电量加上积分结果得到当前电量。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

内阻法:内阻跟随SOC变化的趋势非常平缓,很小的内阻变化或者测量误差就可以造成SOC值较大的误差。测量接触电阻过大、电池电流较大、出现较大的极化内阻的干扰;锂离子电池温升不一致使得温度监测点的温度和电池本体温度不一致,造成温度补偿出现偏差等等。


卡曼滤波算法:核心思想是根据当前仪器的“测量值”,上一刻的“预测量”,以及“误差”来计算得到当前的“最优值”。其亮点是把误差纳入了计算,误差独立存在不受测量数据的影响。


神经网络算法:模拟人脑及神经元来处理非线性系统的新型算法,无需深入研究锂离子电池的内部结构,只需提前从锂离子电池中提取出符合工作特性的输入与输出样本,并将其输入到建立系统中,就能获得运行中的SOC值。


电池系统SOC可用范围


SOC可用范围:SOC范围减掉SOC的缓冲区域,剩下的部分就是SOC可用范围了。SOC状态范围百分比一般是从0%到100%,但考虑到化学电池反应特性:阀值边界,静态和动态差异、倍率差异、估值精度差异等,SOC估值要留出缓冲区间,以确保锂离子电池时时刻刻工作在安全区域。

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

SOC可用范围优化就是确定电池不同条件、工况下的下限值。锂离子电池上限的缓存区间很小,可以挖掘的空间不大。上限的缓存重要是在充电安全方面,保证不过充为目的。快充时充到SOC80%;慢充时依靠涓流小电流充电,可以达到95%以上。电池下限值重要是考虑放电工况,放电电流的变化能力,会影响动力输出或驾乘感受。同时其缓存的宽度还是很大的。


通过上面分析,SOC可用范围大小,关键还是由锂离子电池参数的准确,以及BMS算法的精度决定的。这两个方面缺一不可。同时在保证电池安全的前提下,面对各种工况,BMS策略和算法不能一刀切,更要精准多层次实现。在锂离子电池安全的前提下把电池能力用足,优化最大化SOC可用范围。


钜大锂电,22年专注锂电池定制

钜大核心技术能力