钜大LARGE | 点击量:1716次 | 2021年10月22日
超级电容器与蓄电池混合储能系统在微网中的应用
有效的储能方式对微网运行安全稳定性以及内部供电平衡具有重要的意义。由于微网中太阳能光伏、风力发电等分布式单元输出单元具有随机性以及间歇性等特点,并且电力负荷也具有随机性变化特点,给微网运行的稳定性造成很大的影响。
1微网中超级电容器与蓄电池混合储能系统的用途
微网的运行模式重要包括两种,即并网运行以及孤岛运行。一般情况下,微网与常规的配电网并网运行,当电网事故或出现电能质量事故时,微电网采用孤岛运行模式。微网运行过程中会涉及到这两种运行模式的转换,转换过程中会造成一定的功率缺额,这就要设置一定的储能装置,保证微网两种运行模式的平衡转换,增强微网运行的稳定性。
一些新能源发电过程中,受到外界因素的影响,常常出现没有电能输出的现象,这时就要由储能系统为电力用户供应电能。微网规模小,自我调节能力弱,负荷波动以及电网运行故障会对其造成很大的影响。超级电容器与蓄电池混合储能系统能有效的解决这一问题,能够在负荷低落时储存多余的电能,负荷高峰将储存的电能反馈给微网,为微网功率的调节供应帮助。
在微网中设置超级电容器与蓄电池混合储能系统,能够解决微网电压骤降、电压跌落等问题,提高微网电能质量。
充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%
2混合系统储能系统
蓄电池储能是目前微电网中应用最广泛、最有前途的储能方式之一。蓄电池储能以解决系统高峰负荷时的电能需求,也用蓄电池储能来协助无功补偿装置,有利于抑制电压波动和闪变。然而蓄电池的充电电压不能太高,要求充电器具有稳压和限压功能。蓄电池的充电电流不能过大,要求充电器具有稳流和限流功能,所以它的充电回路也比较复杂。
另外充电时间长,充放电次数仅数百次,因此限制了使用寿命,维修费用高。假如过度充电或短路窖易爆炸,不如其他储能方式安全。由于在蓄电池中使用了铅等有害金属,所以其还会造成环境污染。常见的蓄电池包括铅酸蓄电池、锂离子电池等。随着科技水平的进步,液流钒电池和钠硫电池的研究取得突破性进展。
这两种电池具有高能量效率、使用寿命长、无放电现象等优良特性,在国外一些微电网研究系统中得到运用。但是,由于价格原因,在微电网中的大规模运用还有待时日。
超级电容器指的是有特殊材质制作的多空介质,相有关普通的电容器老说,介电常数更高,耐压管理以及储能容量更大,同时具备了电容器释放能量速度快的优势。拆机电容器在运行过程中没有运动部件,所以维修工作量极少,具有较高的可靠性。
目前,超级电容器逐渐应用在边防哨所、高山气象台等电源供应场合。但是超级电容器也具有一定的缺陷,如电容串联均压、端电压波动范围大、能量密度低等问题。
超级电容器与蓄电池混合储能系统,就是将两种储能设备有机的结合起来,整合了两种储能方式的优点,弥补了两种储能技术的缺点,提高了储能系统的性能。
大量的研究表明,超级电容器与蓄电池混合储能系统在微网中的应用,能够提升微网储能系统的输出能力、提升储能系统的放电时间,降低系统内部损耗;另外,两者混合使用,减少蓄电池放电循环次数,减少对蓄电池的损耗,新增其使用寿命;总之,超级电容器与蓄电池混合储能系统的应用,改善了微网供电质量,提高了微网运行稳定性与经济性。
3微网储能技术发展趋势
我国的微网储能技术还处于初步发展阶段,具有很大的发展空间与前景。首先,应该加快对高效低成本储能电池的研发,重点放在提升电能存放速度方面;其次,单一的储能技术在一定程度上存在局限性,对其进行改进优惠受到经济成本等因素的制约。
可以将两种或几种储能技术有机的结合起来,扬长避短;最后,微电网中储能装置的拥有者必须得到实时的电网信息,包括电价以及电网故障等,才能使微电网储能装置的用途得到充分发挥。
随着微网在电力系统中发挥的用途越来越大,微网储能方式以及储能装备向着市场化管理方向发展。保证微网储能装置的使用者能够及时的掌握电网信息,包括电网运行中的故障以及电价等,这样才能保证微网储能装置发挥应有的用途。
储能系统在微电网中应用的分析理论和方法:在充分理解含储能装置的微电网的动态特性的基础上,研究储能装置内部的复杂非线性电磁问题,以及储能装置和系统中元件之间的相互用途。
4总结
储能技术有关微网运行的稳定性具有重要的用途。本文根据蓄电池、超级电容器等单一储能技术存在的局限性,提出了一种超级电容器与蓄电池混合储能系统,该储能系统不仅综合了两者的优点,还有效的弥补了两者的缺陷,提高了储能效率。该混合储能系统在微网中的运用,对实现微网内部电压平衡,提高微网运行的经济性与稳定性都具有十分重要的意义。