低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

废旧锂离子电池的资源化技术:湿法回收技术为主

钜大LARGE  |  点击量:4383次  |  2021年12月07日  

锂离子电池回收技术概况


废旧锂离子电池的资源化技术,是将废旧锂离子电池中有价值的成分,依据其各自的物理、化学性质,将其分离。一般而言,整个回收工艺分为4个部分:(1)预处理部分;(2)电极材料修复;(3)有价金属的浸出;(4)化学纯化。


在回收过程中,按照不同的提取工艺分类,可将锂离子电池的回收技术分为3大类:(1)干法回收技术;(2)湿法回收技术;(3)生物回收技术。


干法回收重要包括机械分选法和高温热解法(或称高温冶金法)。干法回收工艺流程较短,回收的针对性不强,是实现金属分离回收的初步阶段。重要是指不通过溶液等媒介,直接实现材料或有价金属的回收方法,重要是通过物理分选法和高温热解法,对电池破碎进行粗筛分类,或高温分解除去有机物以便于进一步的元素回收。


湿法回收技术工艺比较复杂,但各有价金属的回收率较高,是目前重要处理废旧镍氢电池和锂离子电池的技术。湿法回收技术是以各种酸碱性溶液为转移媒介,将金属离子从电极材料中转移到浸出液中,再通过离子交换、沉淀、吸附等手段,将金属离子以盐、氧化物等形式从溶液中提取出来。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

生物回收技术具有成本低、污染小、可重复利用的特点,是未来锂离子电池回收技术发展的理想方向。生物回收技术重要是利用微生物浸出,将体系的有用组分转化为可溶化合物并选择性地溶解出来,得到含有效金属的溶液,实现目标组分与杂质组分分离,最终回收锂等有价金属。目前,有关生物回收技术的研究刚刚起步,之后将逐步解决高效菌种的培养、周期长的问题以及有关浸出条件的控制问题。


从回收工艺的次序来看,第一步:预处理过程,其目的是初步分离回收旧锂离子电池中的有价部分,高效选择性地富集电极材料等高附加值部分,以便于后续回收过程顺利进行。预处理过程一般结合了破碎、研磨、筛选和物理分离法。重要的几种预处理方法包括:(1)预放电;(2)机械分离;(3)热处理;(4)碱液溶解;(5)溶剂溶解;(6)手工拆解等。


第二步:材料分离。预处理阶段富集得到了正极和负极的混合电极材料,为了从中分离回收Co、Li等有价金属,要对混合电极材料进行选择性提取。材料分离的过程也可以按照干法回收、湿法回收和生物回收的分类技术分为:(1)无机酸浸出;(2)生物浸出;(3)机械化学浸出。


第三步:化学纯化。其目的在于对浸出过程得到的溶液中的各种高附加值金属进行分离和提纯并回收。浸出液中含有Ni、Co、Mn、Fe、Li、Al和Cu等多种元素,其中Ni、Co、Mn、Li为重要回收的金属元素。通过调节pH将Al和Fe选择性沉淀出后,再对浸出液中的Ni、Co、Mn和Li等元素进行下一步的处理回收。常用的回收方法有化学沉淀法、盐析法、离子交换法、萃取法和电沉积法。


国内外公司动力锂离子电池回收的技术路线和趋势:湿法工艺和高温热解为主流

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

比较国外主流电池回收公司的废旧动力锂离子电池回收工艺可以发现,目前主流锂离子电池回收工艺以湿法工艺和高温热解为主,且很大一部分已经投入了工业生产阶段。


锂电回收经济性强,电池厂商自行拆解或第三方拆解模式是目前主流


从2015年以来,随着新能源汽车行业的爆发,以及电池材料的趋势性变化(向着高镍三元材料的方向发展),钴、镍及碳酸锂/氢氧化锂的价格将受到一定幅度的提振。这使得回收废旧锂离子电池的经济性得到进一步重视。


我国私家车年平均行驶里程约为1.6万公里,保守估计私家车的使用条件下,纯电动/插电式汽车的动力锂离子电池组使用寿命为4~6年左右;而有关公交车、出租车等车型,由于其日均行驶里程长,充电较为频繁,其动力锂离子电池组的寿命为2~3年。


不同类型动力锂离子电池金属含量各不相同,根据权威机构对各类电动汽车占比以及单车锂电容量的预测,有关我国未来动力锂离子电池的报废量进行了预测。预计到2018年,我国新增报废的动力锂离子电池将达到11.8Gwh,对应可回收利用的金属为:镍1.8万吨、钴0.3万吨、锰1.12万吨、锂0.34万吨;预计到2023年,新增报废的动力锂离子电池将达到101Gwh,对应可回收利用的金属为:镍11.9万吨、钴2.3万吨、锰7.1万吨、锂2万吨。


权威机构预计,除金属钴外,其他几种金属价格在未来几年都将有不同程度的下降,据此推算,到2018年,可回收的有价金属的市场规模将达到镍14亿元、钴8.7亿元、锂26亿元;到2023年,可回收的有价金属的市场价值可以达到镍84亿元、钴73亿元、锰8.5亿元、锂146亿元。


通过建立经济性评估模型针对动力锂离子电池回收过程中投入成本和回收材料产出的收益,可以以以下数学模型进行表示:


Bpro表示废旧动力锂离子电池回收的利润;Ctotal表示废旧动力锂离子电池回收的总收益;Cdepreciation表示废旧动力锂离子电池设备的折旧成本;Cuse表示废旧动力锂离子电池回收过程的使用成本;Ctax表示废旧动力锂离子电池回收公司的税收。


废旧动力锂离子电池回收和再资源化过程的使用成本重要包括以下几项(1)原材料成本;(2)辅助材料成本;(3)燃料动力成本;(4)设备维护成本;(5)环境处理成本;(6)人工成本。


从毛利率、可行性和可持续性三方面看,权威机构认为:电池厂商直接回收利用形成闭环的模式以及第三方专业拆解机构向电池厂商购买废旧电池的模式是目前主流的动力锂电回收模式,且在锂电综合回收的情况下具有较好的经济性。


假设:(1)目前的金属价格(钴21.5万元/吨、镍7.77万元/吨、锰1.1万元/吨、锂70万元/吨、铝1.26万元/吨、铁0.2万元/吨)且不考虑其他回收出现的收益;(2)考虑各类动力锂离子电池的使用占比(磷酸铁锂70%、锰酸锂7%、三元23%)综合回收锂离子电池;(3)除原材料之外其他成本相同


结论及分析:第三方专业机构从小作坊收购废旧锂离子电池并进行拆解加工的毛利率最高,达到60%;其次是行业联盟回收加工的形式,毛利率达到45%。但这两种方式中,前者(第三方:购于小作坊)存在安全和环保性问题,且目前小作坊尚未认识到锂电回收产业的巨大价值,收购价格较低,因此这种方式不具有可持续性;后者(行业联盟)目前由于相关管理条例和法律环境不完善,可行性仍然较低,但未来将是趋势之一。;其他三种方式可行性和可持续性都较好,但其中电池生产商直接回收利用和第三方专业拆解机构向生产商购买废旧电池的模式毛利率较高,因此权威机构认为这两种方式将构成目前主流的回收模式。


三元电池材料的回收价值较其他动力锂离子电池更高,如单独考虑回收三元动力锂离子电池的情况,则电池厂商回收利用模式和向电池厂商购买废旧电池的第三方拆解模式皆具备优质的投资价值(2016年测算到毛利率分别达到55%和48%


权威机构认为,动力锂电回收产业将在未来5年内逐步实现规范化、规模化,行业联盟的回收模式有望在产业发展中后期形成,由于其规模效应,将拥有较高的毛利率。此外,原有的生产者回收利用模式和向生产者购买废旧电池的第三方拆解模式仍具备较强经济性。



钜大锂电,22年专注锂电池定制

钜大核心技术能力