低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

李泓:全固态锂离子电池开发面对四个挑战

钜大LARGE  |  点击量:647次  |  2021年11月30日  

尊敬的各位嘉宾上午好!今天很高兴有机会再次在电动汽车百人会上介绍固态电池方面的进展,去年我们在报告中提出,我们设想未来的最终电动汽车有可能是固态锂空气电池,那个时候在这方面的认识还不足,过去几年通过几个团队的努力取得了几个进展,一个是简单提一下,我们现在对固态电池的理解,第二是介绍一下研发进展。这是最近中日美三国政府提出的动力锂离子电池的发展目标,从技术的指标上,核心指标是能量密度,越提越高,从300瓦时每公斤,一直到500瓦时每公斤,包括美国DOE还有我国的重点专项,纳米材料、基因组都提出了很高的指标要求。


【我国科学院物理研究所研究员李泓】


怎么样实现这些超高能量密度的指标,同时还要兼顾动力锂离子电池使用时的安全性、寿命、成本,这是摆在很多研发人员面前的问题。


从技术分析的角度,目前重要的动力锂离子电池还是正极材料匹配人造石墨这一类的负极材料,接下来提高能量密度,很可能要把硅负极引入,体积膨胀是很难解决的问题,接下来是把硅负极用金属锂替代,1972年研发到现在,历时50多年,有非常多的挑战,关键的几个问题是目前大多数的研发还是在有机的溶剂中,在有机溶剂中第一个问题是它不像石墨负极锂进和出,是非均匀的析出。第二是自发和电解液发生反映,体积变化也比较大。逐步导致锂离子电池VCR膜也不能稳定存在,安全性、自放电等方面还不能满足需求,非常多的公司和研发团队把希望寄托在全固态锂电方面。固态电池和业态电池在微观上也是三层结构,只是把现在的隔膜电解液替换为固态电解质,这是典型的照片,没有太本质的差别,核心是有可能负极使用了金属锂,在这种情况下,在正极这一侧,原来的液体可以充分浸润正极颗粒,在正极侧接触,这是难度非常大的。从大家预期的优点上,假如使用了金属锂,现在容易燃烧和爆炸的液态电解质,另外使用寿命等等都会延长,模块配置等都是大家期望的,在实践中这些数据有待进一步的检验,在2007年的时候,日本的NEDO在2008年公布了这样的路线图,在他们看来在远期的2030年,很多的电池形态是以全固态形式出现,包括金属锂、锂硫和锂空气电池,这些路线在不断修改中,但是大体是提高安全性的策略,就是固态化。


2016年,美国APER的两千万美元的项目,全部支持各类固体电解质的开发,以及固体电解质的制造技术,现在在我国,在过去两三年的推动下,从事固态电池开发的团队非常多,展示的单位不多,具备能力开发的小团队,从南到北非常多的研发团队为主,公司包括宁德时代新能源,苏州新陶还有珈伟股份等,我不一一介绍了。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

目前总体而言,全固态锂离子电池开发面对四个挑战,一个是在电极层面,怎么样满足正负极课题和固体电解质的离子传输,特别是循环过程中,第二是循环过程中正负极材料不能像液体那样保持非常好的接触。还有金属锂电极的体积变化还有锂固体的变化。


接下来介绍一下,2013年中科院决定采取纳米先导专项。这里提出要做长续航的动力锂离子电池,通过提升能量密度来延长电动汽车的续驶里程,提出了300瓦时每公斤的指标,跟现在国家的任务是一致的。在这里包括第三代锂离子电池技术,包括现一代度固态电池,锂硫和锂空电池,包括12家科研单位,24个PI,400人,一直在动态的管理中。


再简单地说一下整个先导项目取得的进展,在样品的层面研制了一些高能量密度的锂离子、锂空、锂硫,还打造了高水平的诊断分析平台,金属锂表面引入无机的磷酸锂做这个事情,提高它的稳定性,这是由化学所的郭博士做的。他们最近开发了聚醚丙烯酸脂这是一个非常重要的突破。



钜大锂电,22年专注锂电池定制

钜大核心技术能力