低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

宁德时代明年将投产钠离子电池产线,电池行业“钠锂共舞”或成现实?

钜大LARGE  |  点击量:638次  |  2021年12月21日  

日前,宁德时代董事长助理、党委第一书记孟祥峰对外透露,明年宁德时代将有一条钠离子电池产线投入生产。此前,工信部在8月曾发布一份政协提案答复函,称有关部门将支持钠离子电池加速创新成果转化,支持先进产品量产能力建设。


据了解,宁德时代第一代钠离子电池在7月29日线上发布,其单体电芯能量密度达到160Wh/kg,略低于磷酸铁锂电池,但在低温性能和快充方面具有明显优势。同时,锂钠混搭电池包也在发布会上首次亮相。


宁德时代方面当时透露,已启动钠离子电池产业化布局,将在2023年形成基本产业链。此外,在制造工艺方面,钠离子电池可以实现与锂离子电池生产设备、工艺的完美兼容,产线可进行快速切换,完成产能快速布局。


什么是钠离子电池?


钠离子电池具有与锂离子电池类似的工作原理,正负极由两种不同的钠离子嵌入化合物组成。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

充电时,Na+从正极脱出经过电解质嵌入负极,同时电子的补偿电荷经外电路供给到负极,保证正负极电荷平衡。放电时则相反,Na+从负极脱嵌,经过电解质嵌入正极。


在正常的充放电情况下,钠离子在正负极间的嵌入脱出不破坏电极材料的基本化学结构。从充放电可逆性看,钠离子电池反应是一种理想的可逆反应。    


钠离子电池工作原理


为什么要研究钠离子电池?


可以总结为四个字,成本控制。

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

众所周知,锂离子电池材料中常用的钴和镍等重金属元素,不仅资源稀有、价格昂贵,而且对环境也有不利影响。


特别需要指出的是,合成正极材料都需要相当比例的含锂前驱体,而锂的资源十分有限,随着锂离子电池应用范围的快速扩展,必然会出现锂盐供不应求的局面。


其实,近年来由于我国电动汽车产量快速增长,导致锂离子电池产能的提升,从而出现碳酸锂价格飞涨的局面。


可以预期,锂离子电池原材料成本难以大幅降低,将使其在大规模储能中的应用受到限制。


锂资源有限


对于锂离子电池材料,含锂前驱体主要形式为碳酸锂。碳酸锂有两种来源:矿石和盐湖。锂矿石主要以锂辉石、锂云母及磷铝石矿的形式存在。从盐湖卤水提取生产的锂化学产品主要是碳酸锂或氯化锂。


美国地质调查局的数据显示,目前全球已探明的锂资源量(金属锂当量)为3950万吨,其中几乎73%集中分布在南美洲少数国家。全球可开采锂资源储量约为1350万吨(以碳酸锂当量计算约为7100万吨),近两年锂资源的年平均开采量为3.5万吨,即便如此预计也仅可供开采385年,更何况目前每年的锂资源开采量正逐渐增加。


统计数据显示,目前全球一年锂资源的消耗量大约是3万吨(以金属锂计算),其中约有1万吨是用于电池领域,也就是说在锂的下游用途中,用于电池领域的锂资源约占总量的30%。


在电动汽车中,锂离子电池成本约占总成本的一半(现在比例有些下降),而在锂离子电池成本中,占比最大的是正极材料,一般占30%~40%。


截至2020年底,全国新能源汽车保有量达492万辆,占汽车总量的1.75%,比2019年增加111万辆,增长29.18%。其中,纯电动汽车保有量400万辆,占新能源汽车总量的81.32%。新能源汽车增量连续三年超过100万辆,呈持续高速增长趋势。


可以预见,未来对于锂资源的消费增量无疑是巨大的。


虽然目前锂资源的消耗还远未枯竭,但是我们应该居安思危,将宝贵的锂资源留给对比能量要求更高和高附加值的便携式电子器件和电动汽车产业,尽早研发下一代在资源和成本上都更有优势的新型储能电池—钠离子电池。


钠电池的优势


众所周知,金属钠元素在地壳中储量相对丰富(地壳中钠含量约为2.75%,而锂含量约为0.065‰,图2),且分布区域广泛(钠分布于全球各地,而约70%的锂却集中分布在南美洲地区)。


同时,钠和锂的物理化学性质相似且脱/嵌机制类似,因此钠离子电池的研究与开发有望在一定程度上缓解由于锂资源短缺引发的储能电池发展受限问题。


除了资源丰富易得、成本低廉、分布广泛的优势外,和锂离子电池相比,钠电池更具有安全优势,钠电池热失控温度高于锂电池,且更容易钝化、氧化,不易产生易燃现象,而这正是锂电池的主要弊端。


在电池体系中,钠不会与铝发生电化学合金化反应,因此钠离子电池可以采用铝箔作为负极集流体(替代锂离子电池体系中铜箔集流体),这样可以有效避免过放电引起的集流体氧化问题,既有利于电池的安全,又达到了进一步降低电池成本的目的。


另一方面,钠电池充电速度比锂电池要快许多,在高温、低温等条件下都能稳定充放电,优于锂电池。


而且钠电池的制造成本更低廉,这也是它被当成锂代替品的重要原因。


钠电池的劣势


当然钠离子电池也存在着不可忽视的缺陷,如钠元素的相对原子质量比锂元素大很多,而且钠离子半径比锂离子半径大,这使得钠离子电池的能量密度和功率密度比锂离子电池要低。


不过,在规模储能应用中对电池能量密度的要求并不是太高,其成本和寿命则是关心的重点。可以断言,钠离子电池在大规模储能应用领域拥有比锂离子电池更大的市场竞争优势。


钠离子电池与锂离子电池具有相似的工作机理,而锂离子电池发展相对成熟,目前,借鉴锂离子电池电极材料制备相应的钠离子电池电极材料成为一种主要研究方法并在一定程度上展现了较好的电池性能。


但是,钠离子电池在发展的过程中也存在几个关键问题亟待解决:


第一,钠离子电池是一种有别于锂离子电池的电池体系,将锂离子电池电极材料直接应用到钠离子电池的研究上是一种捷径,但寻找新的具有高能量密度和功率密度的正极材料,同时寻找在循环过程中体积变化小的负极材料,提高电池的循环稳定性,才是提高钠离子电池性能的重要途径,也是使钠离子电池早日应用到大规模储能的关键。


第二,目前对于钠离子电池电极材料的合成方法比较单一,传统的固相法和凝胶溶胶法是主要的制备方法,且对电极材料的改性研究较少.寻找更简单高效的合成方法,同时对性能较好的材料进行改性研究也是提高钠离子电池性能的一条途径。


第三,安全问题是制约锂离子电池发展的重要因素,而钠离子电池同样面临安全问题,因此,大力开发新的电解液体系,研究更为安全的凝胶态及全固态电解质是缓解钠离子电池安全问题的重要方向。


电池行业“钠锂共舞”或成现实


目前,锂离子电池核心原材料碳酸锂的价格持续上涨,从4万元每吨上涨到了超过14万元每吨,成本压力之下,锂离子电池会不会被钠离子电池取代?未来是“钠锂相争”还是“钠锂共舞”?电动邦,金刚新能源


钜大锂电,22年专注锂电池定制

钜大核心技术能力