低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

软包锂电池鼓胀原因介绍

钜大LARGE  |  点击量:456次  |  2023年08月30日  

石墨负极膨胀影响因素及机理讨论


锂离子电池在充电过程中电芯厚度新增重要归结为负极的膨胀,正极膨胀率仅为2~4%,负极通常由石墨、粘接剂、导电碳组成,其中石墨材料本身的膨胀率达到~10%,造成石墨负极膨胀率变化的重要影响因素包括:SEI膜形成、荷电状态(stateofcharge,SOC)、工艺参数以及其他影响因素。


(1)SEI膜形成锂离子电池首次充放电过程中,电解液在石墨颗粒在固液相界面发生还原反应,形成一层覆盖于电极材料表面的钝化层(SEI膜),SEI膜的出现使阳极厚度显著新增,而且由于SEI膜出现,导致电芯厚度新增约4%。从长期循环过程看,根据不同石墨的物理结构和比表面,循环过程会发生SEI的溶解和新SEI生产的动态过程,比如片状石墨较球状石墨有更大的膨胀率。


(2)荷电状态电芯在循环过程中,石墨阳极体积膨胀与电芯SOC呈很好的周期性的函数关系,即随着锂离子在石墨中的不断嵌入(电芯SOC的提高)体积逐渐膨胀,当锂离子从石墨阳极脱出时,电芯SOC逐渐减小,相应石墨阳极体积逐渐缩小。


(3)工艺参数从工艺参数方面看,压实密度对石墨阳极影响较大,极片冷压过程中,石墨阳极膜层中出现较大的压应力,这种应力在极片后续高温烘烤等工序很难完全释放。电芯进行循环充放电时,由于锂离子的嵌入和脱出、电解液对粘接剂溶胀等多个因素共同用途,膜片应力在循环过程得到释放,膨胀率增大。另一方面,压实密度大小决定了阳极膜层空隙容量大小,膜层中孔隙容量大,可以有效吸收极片膨胀的体积,空隙容量小,当极片膨胀时,没有足够的空间吸收膨胀所出现的体积,此时,膨胀只能向膜层外部膨胀,表现为阳极片的体积膨胀。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

(4)其他因素粘接剂的粘接强度(粘接剂、石墨颗粒、导电碳以及集流体相互间界面的粘接强度),充放电倍率,粘接剂与电解液的溶胀性,石墨颗粒的形状及其堆积密度,以及粘接剂在循环过程失效引起的极片体积新增等,均对阳极膨胀有一定程度的影响。


膨胀率计算用二次元测量阳极片X、Y方向尺寸,千分尺测量Z方向厚度,在冲片以及电芯满充后分别测量。


以压实密度和涂布质量为因子,各取三个不同水平,进行全因子正交实验设计(如表1所示),各组别其他条件相同。


电芯满充后,阳极片在X/Y/Z方向的膨胀率随着压实密度增大而增大。当压实密度从1.5g/cm3提高到1.7g/cm3时,X/Y方向膨胀率从0.7%增大到1.3%,Z方向膨胀率从13%增大到18%。从图2(a)可以看出,不同压实密度下,X方向膨胀率均大于Y方向,出现此现象的原因重要是由极片冷压工序导致,在冷压过程中,极片经过压辊时,根据阻力最小定律,材料受到外力用途时,材料质点将沿着抵抗力最小的方向流动.


负极片冷压时,阻力最小的方向为MD方向(极片的Y方向,如图3所示),应力在MD方向更容易释放,而TD方向(极片的X方向)阻力较大,辊压过程应力不易释放,TD方向应力较MD方向大。故导致电极片满充后,X方向膨胀率大于Y方向膨胀率.另一方面,压实密度增大,极片孔隙容量降低(如图4所示),当充电时,阳极膜层内部没有足够的空间吸收石墨膨胀的体积,外在表现为极片整体向X、Y、Z三个方向膨胀。从图2(c)、(d)可以看出,涂布质量从0.140g/1,540.25mm2增大到0.190g/1,540.25mm2,X方向膨胀率从0.84%增大到1.15%,Y方向膨胀率从0.89%增大到1.05%,Z方向膨胀率趋势与X/Y方向变化趋势相反,呈下降趋势,从16.02%降低到13.77%。说明石墨阳极膨胀在X、Y、Z三个方向呈现此起彼伏的变化规律,涂布质量变化重要体现在膜层厚度的显著变化。以上负极变化规律与文献结果一致,即集流体厚度与膜层厚度比值越小,集流体中应力越大。

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

选取铜箔厚度和涂布质量两个影响因子,铜箔厚度水平分别取6和8μm,阳极涂布质量分别为0.140g/1、540.25mm2和0.190g/1、540.25mm2,压实密度均为1.6g/cm3,各组实验其他条件均相同,实验结果如图5所示。从图5(a)、(c)可以看出,两种不同涂布质量下,在X/Y方向8μm铜箔阳极片膨胀率均小于6μm,说明铜箔厚度新增,由于其弹性模量新增(见图6),即抗变形能力增强,对阳极膨胀约束用途增强,膨胀率减小。根据文献,相同涂布质量下,铜箔厚度新增时,集流体厚度与膜层厚度比值新增,集流体中的应力变小,极片膨胀率变小。而在Z方向,膨胀率变化趋势完全相反,从图5(b)可以看出,铜箔厚度新增,膨胀率新增;从图5(b)、(d)比较可以看出,当涂布质量从0.140g/1、540.25mm2新增到0.190g/1,540.25mm2时,铜箔厚度新增,膨胀率减小。铜箔厚度新增,虽然有利于降低自身应力(强度高),但会新增膜层中的应力,导致Z方向膨胀率新增,如图5(b)所示;随着涂布质量新增,厚铜箔虽然对膜层应力新增有促进用途,但同时对膜层的约束能力也增强,此时约束力更加明显,Z方向膨胀率减小。


石墨类型对负极膨胀的影响


采用5种不同类型的石墨进行实验(见表2),涂布质量0.165g/1,540.25mm2,压实密度1.6g/cm3,铜箔厚度8μm,其他条件相同,实验结果如图7所示。从图7(a)可以看出,不同石墨在X/Y方向膨胀率差异较大,最小0.27%,最大1.14%,Z方向膨胀率最小15.44%,最大17.47%,X/Y方向膨胀大的,在Z方向膨胀小,同分析的结果一致。其中采用A-1石墨的电芯出现严重变形,变形比率20%,其他各组电芯未出现变形,说明X/Y膨胀率大小对电芯变形有显著影响。



钜大锂电,22年专注锂电池定制

钜大核心技术能力