低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

石墨烯铁磁金属界面拓扑磁结构机理研究获进展

钜大LARGE  |  点击量:704次  |  2022年08月26日  

磁斯格明子,一种受拓扑保护的磁涡旋结构(如图1),因其可以做到纳米尺寸、非易失且易驱动从而非常适合应用在信息存储、逻辑运算或者神经网络技术等领域,是近些年来自旋电子学研究的热点。然而要实现磁斯格明子在自旋电子学器件上的应用还要解决诸如其室温下的稳定性、可控读写、高密度以及与当前磁存储结构兼容等诸多问题。解决上述问题的物理本质是找到适宜的Dzyaloshinskii-Moriya相互作用(DMI)及垂直磁各向异性材料结构。


图1磁斯格明子结构及Co(Ni)/graphene结构示意图



中国科学院宁波材料技术与工程研究所研究员杨洪新自2012年起就开展DMI方面的工作,曾与MairbekChshiev教授、AndreaThiaville教授以及诺贝尔奖得主AlbertFert等合作发展了基于第一性原理计算界面DMI的方法,成功地从第一性原理角度揭示了铁磁金属和重金属界面Fert-Levy型DMI的物理图象(如图2左)[HYetetal.Phys.Rev.Lett.115,267210(2015);O.Boulle,J.Vogel,HYetal.NatureNanotech.11,449(2016)],铁磁金属与重金属界面也是当前拓扑磁结构研究最多的体系,然而,Fert-Levy机制要求非磁衬底提供强SOC才能产生较大DMI(如图2左上),从而导致衬底材料的选择要多从5d等重金属材料中做出,而重金属的存在,一般会影响存储器件的读写效率,并与当前工业界普遍使用的磁隧道结存储结构不兼容,使制造工艺复杂化,因而如何突破重金属的限制,即突破Fert-Levy机制实现较大DMI,成为该领域的一大难题。


图2Fert-Levy型DMI及Rashba效应引起的DMI为解决这一问题,杨洪新及其合作者对铁磁金属和石墨烯界面进行了深入研究,其结构如图1所示,发现在单层Co与石墨烯界面可以诱导高达1.14meV的DMI,而三层Co与石墨烯界面则可以诱导强度为0.49meV的DMI,其强度完全可以与部分铁磁金属/重金属界面DMI相比,更为有意思的是,该体系的物理机制完全不同于Fert-Levy型DMI,从图2可以看到,在Co/Pt结构中,DMI在界面铁磁层Co层最大,而其能量来源,即SOC能量并非来自Co层,而是来自界面的贵金属Pt层;在graphene/Co中,DMI和SOC能量则都在Co层内,该差别的物理本源是因为在graphene/Co的界面DMI是Rashba效应诱导的DMI(如图2右),而Co/Pt界面为Fert-Levy型。为验证Rashba效应诱导的DMI,杨洪新与其合作者进一步通过第一性原理计算了不同磁方向上的能带变化进而计算出Rashba系数,从Rashba系数计算出DMI大小为0.18meV,与第一性原理计算所得0.49meV在同一量级(如图3)[HYetal.NatureMaterials(2018)doi:10.1038/s41563-018-0079-4]。


图3计算Graphene/Co界面Rashba效应引起的DMI
与理论计算同步,LawrenceBerkeley国家实验室博士陈宫(本工作的共同第一作者)和教授AndreasSchmid等在实验上独立测量到了Co/Graphene界面上的DMI。如图4所示,在Ru/Co界面,DMI为-0.05meV,而在Ru/Co/graphene双界面中则为0.11meV,可以计算出Co/graphene界面DMI为0.16meV,与第一性原理和Rashba效应计算出来的DMI吻合得很好。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

图4实验通过SPLEEM研究Ru/Co/graphene及Ru/Co的磁畴变化,界面DMI,进而获得Co/graphene界面DMI
最后,考虑到在graphene/Co界面处的DMI手性为反时针,而在graphene/Ni结构中,当Ni厚度低于2个原子层时,其DMI为顺时针,因而可以反转grephene/Ni堆叠结构到Ni/graphene以反转其DMI手性,从而实现graphene/Co/Ni/graphene多层结构中DMI的增强,更为有意思的是,在该结构中垂直磁各向异性也是随着异质结数的增加而增加,实现了多层堆叠同时调控垂直磁各向异性和DMI,从而对拓扑磁结构的调控提供了更多选择(如图5所示)。


图5Co(Ni)/graphene界面DMI随铁磁层厚度变化(左),graphene/Co/Ni/graphene多层膜中DMI及PMA随异质结数变化(右)
综上所述,石墨烯和铁磁金属界面可以实现大的DMI,区别于Fert-Levy模型,其物理机制是Rashba效应诱导的,该结构突破了界面DMI对重金属的依赖。另外,考虑到Co/graphene界面还具有巨大垂直磁各向异性[HYetal.Nanoletters16,145(2015)],而且两者都可以很容易地在Co/graphene界面得到调控,可以预见该系列工作将会对石墨烯自旋电子学和拓扑磁结构自旋轨道电子学的科学研究和应用提供更多可能。


该工作理论部分由杨洪新与法国格勒诺布尔大学、法国国家科学研究中心及法国原子能中心的SPINTEC实验室教授MairbekChshiev、法国国家科学研究中心与Thales联合物理实验室教授AlbertFert等合作完成,实验部分由陈宫和AndreasSchmid等合作完成。该工作得到了EuropeanUnion’sHorizon2020ResearchandInnovationProgramme(GrapheneFlagship)以及法国ANRULTRASKY,SOSPIN,Genci-Cines项目、美国的OfficeofScience,OfficeofBasicEnergySciences,DOE,OfficeofthePresidentMulticampusResearchProgramsandInitiative等项目以及中组部青年项目和宁波市3315项目的支持。

钜大锂电,22年专注锂电池定制

钜大核心技术能力