钜大LARGE | 点击量:1173次 | 2019年01月08日
废旧锂离子电池中金属回收有什么进展
能源和环境是 21 世纪人类所需要面临的两个重大的问题,新能源的开发和资源综合回收利用是人类可持续发展的基础和方向。近年来,锂离子电池由于质量轻、体积小、自放电小、无记忆效应、工作温度范围宽、可快速充放电、使用寿命长、环保等优势而得到了广泛的应用。最早 Whittingham利用 Li-TiS 体系制成首个锂电池,到 1990 年实现商业化,至今已发展 40 余年,取得了很大的进步。据统计, 2017 年 1~10月中国锂离子电池累计产量为 89.9 亿只,累计增长率达 34.6 %。国际上,锂离子电池在航天电源领域的应用已进入工程化应用阶段, 全球一些公司和特种部门对锂离子电池应用于航天进行了研发, 如美国的 “国家特种和 航天管理局 ”(NASA)、 Eagle-Picher 电池公司、法国的 SAFT公司、日本的 JAXA 公司等。
随着锂离子电池的广泛应用,造成了废旧电池的数量越来越多。预期在 2020 年前后,我国仅纯电动(含插电式)乘用车和混合动力乘用车动力电池的累计报废量在 12~17 万 t。锂电池虽被称为“绿色电池”,不含有 Hg、 Pb 等有害元素,但其正极材料、电解质溶液等会对环境造成很大的污染,同时造成资源的浪费。因此,综述国内外废旧锂电池回收处理的工艺现状,并在此基础上总结废旧锂离子电池回收工艺的发展方向,具有十分重要的现实意义。
1 锂离子电池的主要成分
锂离子电池主要成分包含外壳、电解液、阳极材料、阴极材料、胶黏剂、铜箔和铝箔等。其中, Co、 Li、 Ni 质量分数分别为 5%~15%、 2%~7%、0.5%~2%,还有 Al、 Cu、 Fe 等金属元素;从主要成分价值占比来看,阳极材料和阴极材料约占33%和 10%,电解液和隔膜分别约占 12%和 30%。废旧锂离子电池中主要回收的金属是 Co 和 Li,主要集中在阳极材料上的钴锂膜上。尤其是我国钴资源相对贫乏,开发利用较为困难,而在锂离子电池中钴的质量分数约占 15%,是伴生钴矿的 850 倍左右。目前, 以 LiCoO2为正极材料的锂离子电池应用较为广泛,其中含有钴酸锂、六氟磷酸锂、有机碳酸酯、碳素材料、铜、铝等化学物质, 主要金属含量如表 1 所示。
2 废旧锂离子电池回收工艺
充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%
采用湿法工艺处理废旧锂离子电池是目前研究较多且较为成熟的工艺,工艺流程如图 1 所示。主要经历 3 个阶段: 1)将回收的废旧锂离子电池进行彻底放电、简单的拆分破碎等预处理,筛分后获得主要电极材料或破碎后经焙烧除去有机物后得到电极材料; 2)将预处理后得到的电极材料溶解浸出,使各种金属及其化合物以离子的形式进到浸出液中; 3)浸出液中有价金属的分离与回收,这一阶段是废旧锂电池处理过程的关键,也是多年来研究者们研究的重点与难点。目前,分离回收的方法主要有溶剂萃取法、沉淀法、电解法、离子交换法、盐析法等。
2.1 预处理
2.1.1 预放电
废旧锂离子电池中大都残余部分电量,在处理之前需要进行彻底放电,否则在后续处理中,残余的能量会集中释放出大量的热量,可能会造成安全隐患等不利影响。废旧锂电池的放电方式可以分为 2 种,分别是物理放电和化学放电。其中,物理放电为短路放电,通常利用液氮等冷冻液对其先进行低温冷冻,后穿孔强制放电。早期,美国 Umicore、Toxco公司采用液氮对废旧锂电池进行低温(-198 ℃)放电,但这种方法对设备的要求较高,不适合大规模工业应用;化学放电是在导电溶液(多为 NaCl 溶液)中通过电解的方式释放残余能量。早期,南俊民等将单体废旧锂电池置于水和电子导电剂的钢制容器中进行放电,但由于锂离子电池的电解液中含有 LiPF6,与水接触后会反应生成毒性很强的 HF,给环境和操作人员带来危害,故需要在放电后立即对其进行碱浸。 近年来,宋秀玲等利用抗坏血酸的酸性、还原性及稳定性构建了化学性质相对温和的硫酸盐溶液放电体系,确定了最佳放电条件为:电解液 MnSO4浓度 0.8 mol/L、 pH =2.78、抗坏血酸的浓度 2 g/L,放电时间 8 h,最终消电电压降低到 0.54 V,满足绿色高效的放电要求。相较而言,化学放电成本更低,操作简单,可满足工业大规模放电的应用,但电解液对金属壳体及设备的腐蚀,会在放电流程中带来不利影响。
2.1.2 破碎分离
破碎分离的过程主要是为了将电极材料与其它物质(有机物等)在机械作用下通过多级破碎、筛选等分离技术联用,实现电极材料的分离富集,以便于后续利用火法、湿法等工艺从中回收有价金属及化合物。机械分离法是目前普遍采用的预处理方法之一,易于实现废旧锂离子电池大规模工业化回收处理。 Shin 等通过粉碎、筛分、磁选、精细粉碎和分类的工序以达到 LiCoO2的分离富集。结果表明,在较好的条件下可以提高目标金属的回收率,但由于锂电池结构复杂,通过该方法很难将各组分彻底分开; Li 等采用了一种新型的机械分离方法,提高了 Co 的回收效率同时降低了能耗与污染。对于拆分出的电极材料,在55 ℃水浴中使用超声波进行冲洗和搅拌 10 min,结果使得 92%的电极材料与集流体金属分离。同时,集流体可以以金属的形式进行回收。
2.1.3 热处理
热处理的过程主要是为了除去废旧锂电池中难溶的有机物、碳粉等,以及对于电极材料和集流体的分离。目前采用的热处理方式多为高温常规热处理,但存在分离深度低、环境污染等问题,为进一步改善工艺,近年来,对高温真空热解法的研究越来越多。 Sun 等采用高温真空热解的方法将废旧电池材料在粉碎之前于真空炉中进行热解,以 10 ℃·min-1 的速度升温至 600 ℃后恒温30 min,有机物以小分子液体或气体的形式分解,可单独收集后用于化学原料,同时,经高温热解后, LiCoO2层变得疏松易于从铝箔上分离,有利于最终无机金属氧化物可以有效分离富集;孙亮采用真空热解的方法预处理废旧锂离子电池正极材料。结果表明,当体系压强低于 1.0 kPa,反应温度 600 ℃,反应时间 30 min 时,有机粘结剂可以被基本除去,正极活性物质大部分从铝箔上脱落分离,铝箔保持完好。相较于常规热处理技术,高温真空热解法可单独回收有机物,提高资源综合利用率,同时可以避免有机材料分解后产生的有毒气体对环境造成污染,但对其设备要求高、操作复杂,工业化推广具有一定的局限性。
2.1.4 溶解法
溶解法是根据“相似相溶”的原理,利用正极材料与黏结剂(多为 PVDF)、铝箔等杂质在有机溶剂中的溶解性的差异实现分离富集。常选取强极性有机溶剂溶解电极上的 PVDF,使正极材料从集流体铝箔上脱落。梁立君[22]选取多种极性有机溶剂对破碎后的正极材料进行溶解分离对比实验,发现最佳溶剂为 N-甲基吡咯烷酮(NMP),在最优条件下可以使正极材料活性物质 LiFePO4及碳的混合物与铝箔彻底分离; Hanisch 等采用溶解法对经过热处理和机械压力分离及筛分过程后的电极进行彻底的分选。将电极在 90 ℃下置于 NMP 中处理 10~20 min,重复 6 次后,电极材料中的粘结剂可以完全溶解,分离效果较为彻底。溶解法相较于其它前处理方法,操作简单,同时可以有效提高分离效果及回收速率,工业化应用前景较好。目前,黏结剂多采用 NMP 溶解分离,效果较好,但因其价格较高、易挥发、低毒性等不足,从而在一定程度上限制了其在工业上的推广应用。
2.2 电极材料的溶解浸出
溶解浸出过程是对预处理后得到的电极材料进行溶解浸出,使电极材料中的金属元素以离子的形式进入到溶液中,然后通过各种分离技术选择性分离回收其中的主要有价金属 Co、 Li 等。溶解浸出的方法主要包括化学浸出和生物浸出法。
2.2.1 化学浸出
传统的化学浸出方法是通过酸浸或碱浸的方式实现电极材料的溶解浸出,主要包括一步浸出法和两步浸出法。一步浸出法通常采用无机酸 HCl、 HNO3、H2SO4 等作为浸出剂对电极材料直接溶解浸出,但这种方法会产生 Cl2、 SO2等有害气体,故需要进行尾气处理。研究发现,在浸出剂中加入 H2O2、Na2S2O3 等还原剂,可有效解决这一问题,同时Co3+被还原成更易于溶解到浸出液中的 Co2+,从而提高浸出率。潘晓勇等采用 H2SO4-Na2S2O3体系浸出电极材料,分离回收 Co、 Li。结果表明,H+浓度 3 mol/L、 Na2S2O3 浓度 0.25 mol/L、液固比15:1, 90 ℃下反应 2.5 h, Co、 Li 的浸出率高于97 %;陈亮等采用 H2SO4+H2O2 为浸出剂对活性物质进行浸出。结果表明:液固比 10:1、 H2SO4浓度 2.5 mol/L、 H2O2 加入量 2.0 mL/g(粉料)、温度 85 ℃、浸出时间 120 min, Co、 Ni 和 Mn 的浸出率分别达到 97%、 98%和 96%;陆修远等采用 H2SO4+还原剂体系浸出废旧高镍型锂离子电池正极材料( LiNi0.6Co0.2Mn0.2O2),研究了不同还原剂(H2O2、葡萄糖及 Na2SO3)对金属浸出效果的影响。结果表明:在最适宜条件下,采用 H2O2作为还原剂,主要金属的浸出效果最好, Li、 Co、Ni、 Mn 的浸出率分别为 100%、 96.79%、 98.62%、97%。综合看来,采用酸-还原剂作为浸出体系,相较于直接酸浸,因浸出率更高、反应速率更快等优点成为目前工业上处理废旧锂离子电池的主流浸出工艺。两步浸出法是将废旧锂电池经过简单预处理后先进行碱浸出,使 Al 以 NaAlO2的形式进入到溶液中,之后加入浸出酸,并在其中加入还原剂H2O2 或 Na2S2O3 做为浸出液,得到的浸出液通过调节 pH 值,选择性沉降 Al、 Fe 并分别回收,将所获得的母液进一步进行 Co、 Li 元素的提取和分离。邓朝勇等[27]采用 10 %NaOH 溶液进行碱浸,Al 浸出率为 96.5%, 2 mol/L 的 H2SO4 和 30%H2O2进行酸浸, Co 浸出率为 98.8%。浸出原理如下:
2LiCoO2+3H2SO4+H2O2→Li2SO4+2CoSO4+4H2O+O2
将所获得的浸出液,经多级萃取等工艺,最终 Co 的回收率达到 98%以上。该方法流程简单,易于操作,对设备腐蚀小,污染少。
2.2.2 生物浸出法
随着技术的发展,生物冶金技术因其高效环保、成本低等优势有着更好的发展趋势及应用前景。生物浸出法是通过细菌的氧化作用,使金属以离子的形式进入到溶液。近年来,有研究者研究了采用生物浸出法浸出废旧锂离子电池中的有价金属。 Mishra 等采用无机酸和嗜酸菌酸氧化亚铁硫杆菌对废旧锂电池进行浸出,利用元素 S 和 Fe2+作为能源,在浸出介质中产生 H2SO4 和 Fe3+等代谢产物,利用这些代谢物溶解废旧锂离子电池中的金属。研究发现, Co 的生物溶解速度比 Li 快。 Fe2+可以促进生物菌生长繁殖, Fe3+与残留物中的金属共沉淀。较高的液固比,即金属浓度的增加,会抑制细菌的生长,不利于金属的溶解; Marcináková 等在两种不同介质下采用嗜酸细菌的聚生体对 Li 和Co 进行生物浸出。富含营养的培养基由细菌生长所需的所有矿物质构成,低营养培养基以 H2SO4和元素 S 作为能源。研究发现,在富营养环境中,Li 和 Co 的生物浸出率分别为 80%和 67%;而在低营养环境中,仅溶解 35%的 Li 和 10.5%的 Co。生物浸出法相较于传统的酸-还原剂浸出体系,具有成本低、绿色环保等优势,但主要金属(Co、 Li 等)的浸出率相对较低,工业化大规模处理具有一定的局限性。
2.3 浸出液中有价金属元素的分离回收
2.3.1 溶剂萃取法
溶剂萃取法是目前废旧锂电池金属元素分离回收应用较为广泛的工艺,其原理是利用有机溶剂与浸出液中的目标离子形成稳定的配合物,再采用适当的有机溶剂将其分离,从而提取目标金属 及 化 合 物 。 通 常 采 用 的 萃 取 剂 主 要 有Cyanex272、 Acorga M5640、 P507、 D2EHPA 和PC-88A 等。Swain 等[30]研究了 Cyanex 272 萃取剂浓度对Co、 Li 分离的影响。结果表明,浓度在 2.5~40mol/m3, Co 的萃取率从 7.15%增加到 99.90%, Li的萃取率从 1.36%增加到 7.8%;浓度在 40~75mol/m3, Co 的萃取率基本不变, Li 的萃取率迅速增加到 18 %;浓度高于 75 mol/m3 时, Co 的分离因子随浓度增加而减小,最大分离因子为 15 641。吴芳等两步法浸出后,采用萃取剂 P204 萃取净化浸出液, P507 萃取分离 Co、 Li,后采用 H2SO4反萃,回收后萃取液加入 Na2CO3 选择性回收Li2CO3。 pH 值为 5.5 时, Co、 Li 分离因子达到1×105, Co 的回收率在 99%以上; Kang 等从成分为 5%~20%Co、 5%~7%Li、 5%~10%Ni、 5%有机化学品和 7%塑料的废旧锂离子电池中回收硫酸钴,对于 Co 浓度为 28 g /L 的浸出液,通过调节 pH 值至 6.5 沉降金属离子杂质如 Cu、Fe 和 Al。然后通过 Cyanex 272 从纯化的水相中选择性地萃取 Co,当 pH<6 时, Co / Li 和 Co / Ni 的分离因子接近 750, Co 的总回收率约为 92%。可以发现,萃取剂的浓度对萃取率有着较大的影响,同时通过控制萃取体系的 pH 值,可以实现主要金属(Co 和 Li)的分离。
在此基础上,采用混合萃取体系处理废旧锂离子电池,可以较好的实现主要金属离子的选择性分离回收[33-34]。 Pranolo 等[33]研究了一种混合萃取体系选择性回收了废旧锂离子电池浸出液中的Co 和 Li。结果表明,将 2%(体积比)Acorga M5640添加到 7%(体积比) Ionquest 801 中,可以降低萃取 Cu 的 pH 值,通过控制体系 pH 值使 Cu、Al、 Fe 先被萃取到有机相中,实现了与 Co、 Ni、Li 的分离。然后将体系 pH 值控制在 5.5~6.0,采用 15%(体积比)的 Cyanex 272 将 Co 选择性萃取,萃取液中的 Ni 和 Li 可以忽略不计;张新乐等[35]采用酸浸-萃取-沉淀法回收废旧锂离子电池中的 Co。结果表明,酸浸液 pH 值为 3.5、萃取剂P507 与 Cyanex272 体积比为 1∶ 1 的条件下,经 2级萃取, Co 萃取率为 95.5%。后续采用 H2SO4反萃,反萃液 pH 值为 4 的条件下沉淀反应 10 min,Co 的沉淀率可达 99.9%。综合看来,溶剂萃取法具有能耗低、分离效果好等优点,酸浸-溶剂萃取法是目前工业上处理废旧锂电池的主流工艺,但对于萃取剂的选择以及萃取条件的进一步优化仍是当前该领域的研究重点,以达到更为高效环保、可循环处理的效果。
2.3.2 沉淀法
沉淀法是将废旧锂离子电池预处理后,经溶解、酸溶后获得 Co、 Li 溶液,加入沉淀剂沉降主要目标金属 Co、 Li 等,从而达到金属的分离。Sun 等采用 H2C2O4 作为浸出剂,同时将溶液中的 Co 离子以 CoC2O4的形式沉淀出来,再通过加入沉淀剂 NaOH 和 Na2CO3,将溶液中的 Al和 Li 分别以 Al(OH)3 和 Li2CO3 的形式沉淀分离;潘晓勇[24]等采用 NaOH 将 pH 调至 5.0 左右,能除去大部分 Cu、 Al、 Ni,经进一步萃取除杂后,依次加入 3%H2C2O4和饱和 Na2CO3沉降 CoC2O4和Li2CO3, Co 回收率高于 99%, Li 回收率高于 98%;李金惠等将废旧锂离子电池预处理后筛选出粒径小于 1.43 mm 的物料与浓度为 0.5~1.0 mol/L 的H2C2O4按照固液比 15~25 g/L 反应 40~90 min,得到 CoC2O4 沉淀物和 Li2C2O4浸出液,最终 CoC2O4和 Li2C2O4 的回收率超过 99%。沉淀法处理量大,主要金属的回收率较高,控制 pH 值可以实现金属的分离,易于实现工业化,但容易受杂质离子干扰,相较于萃取法产品纯度较低。因此,该工艺的关键在于选取选择性更好的沉淀剂以及进一步优化工艺条件,控制有价金属离子沉淀析出的顺序,从而提高产品的纯度。
2.3.3 电解法
电解法回收废旧锂离子电池中的有价金属,是对电极材料浸出液中的金属离子采用化学电解的方式,使其被还原成单质或沉积物。该方法不需要添加其它物质,不易引入杂质,可以获得纯度较高的产品,但多种离子存在的情况下会发生共沉积,从而会降低产品纯度,同时会消耗较多的电能。Myoung 等以 HNO3 处理过的废旧锂离子电池正极材料浸出液为原料,采用恒电位法回收钴。电解过程中, O2 与 NO3-发生还原反应, OH-浓度增加,在 Ti 阴极表面生成 Co(OH)2,经热处理得到 Co3O4。化学反应过程如下:2H2O+O2+4e→4OHNO3-+H2O+2e→NO2-+2OHCo3++e→Co2+
Co2++2OH-/Ti→Co(OH)2/Ti
3Co(OH)2/Ti+1/2O2→Co3O4/Ti+3H2O
Freitas 等采用恒电位和动电位技术从废旧锂电池正极材料中回收 Co。结果表明: Co 的电荷效率随着 pH 增大而减小, pH=5.40、电位-1.00V、电荷密度 10.0 C/cm2 时,电荷效率最大,达到96.60%。化学反应过程如下:Co2++2OH-→Co(OH)2(s)
Co(OH)2(s)+2e→Co(s)+2OH-
2.3.4 离子交换法
离子交换法是利用 Co、 Ni 等不同金属离子络合物在离子交换树脂上吸附能力的差异,实现金属的分离及提取。 Feng 等[40]采用离子交换法从正极材料 H2SO4 浸出液中分离回收 Co。从浸出液pH、循环次数等因素研究其对钴的回收率及与其它杂质分离的影响。结果表明,使用 TP207 树脂、控制浸出液 pH=2.5、循环 10 次处理, Cu 的去除率达到 97.44%,钴的回收率达到 90.2%。该方法对目标离子的选择性较强,工艺简单且易于操作,为废旧锂电池中有价金属的提取、回收提供了新途径,但因成本较高从而限制了工业化应用。
2.3.5 盐析法
盐析法是通过在废旧锂离子电池浸出液中加入饱和(NH4)2SO4溶液和低介电常数溶剂,从而降低浸出液的介电常数,使钴盐从溶液中析出。该方法工艺简单、易于操作且成本低,但在多种金属离子存在的条件下,伴随着其它金属盐的析出,从而会降低产品的纯度。金玉健等根据电解质溶液现代理论,利用盐析法回收废旧锂离子电池中的有价金属。在从LiCoO2 为 正 极 的 HCl 浸 出 液 中 加 入 饱 和(NH4)2SO4 水溶液和无水乙醇,当浸出液、饱和(NH4)2SO4 水溶液和无水乙醇的体积比为 2∶ 1∶3 时, Co2+的析出率可达到 92%以上。所得盐析产品为(NH4)2Co(SO4)2 和(NH4)Al(SO4)2,采用分段盐析可使这两种盐分离,从而得到不同的产品。对于废旧锂离子电池浸出液中有价金属的提取与分离,以上是目前研究较多的几种方法。综合考虑处理量、运行成本、产品纯度及二次污染等因素,表 2 总结对比了前文所述的几种金属分离提取的技术方法。
3 结语
目前,锂离子电池在电动能源等方面的应用愈加广泛,废旧锂离子电池数目不容小觑,对废旧锂离子电池中有价金属的回收具有重要的现实意义。现阶段废旧锂离子电池回收工艺主要是前处理-浸出-湿法回收。前处理包括对废旧锂电池进行放电、破碎及电极材料的分离富集等。其中,溶解法操作简单,同时可以有效提高分离效果及回收速率,但目前采用的主要溶剂(NMP)价格昂贵,一定程度上限制了工业化的应用,故寻找更为适合的溶剂是该领域值得研究的方向之一。浸出过程主要是以酸-还原剂作为浸出剂,可以获得较好的浸出效果,但会产生无机废液等二次污染,而生物浸出法具有高效、环保及低成本等优势,但存在主要金属的浸出率相对不高,对于生物菌的选择及浸出条件的优化从而提高浸出率,可能会成为未来浸出过程的研究方向之一。
湿法回收浸出液中的有价金属是废旧锂离子电池回收过程的关键环节,也是近年来研究的重点和难点,主要的方法有溶剂萃取法、沉淀法、电解法、离子交换法、盐析法等。其中,溶剂萃取法是目前应用较多的方法,具有污染小、能耗低、分离效果好及产品纯度高等显著优势,对于更为高效廉价的萃取剂的选择和研发从而有效降低运行成本,以及多种萃取剂协同萃取的进一步探究可能是该领域重点研究的方向之一。另外,沉淀法因其回收率高、成本低、 处理量大等优点,也是值得重点研究的另一个方向。现阶段沉淀法存在的主要问题是产品纯度低,因此,对于沉淀剂的选择及工艺条件的优化,控制有价金属离子沉淀析出的顺序,从而提高产品纯度将会有较好的工业化应用前景。同时,在废旧锂离子电池处理过程中,不可避免会产生废液、废渣等二次污染,在资源化最大程度利用的同时要将二次污染的危害降至最低,以实现废旧锂离子电池绿色环保、高效及低成本回收。
上一篇:钠离子电池电极材料被玩了
下一篇:石墨vs硅材料之间的PK