低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

分析动力电池浸出液中有价金属元素的分离回收

钜大LARGE  |  点击量:783次  |  2019年04月23日  

溶剂萃取法

溶剂萃取法是目前废旧锂电池金属元素分离回收应用较为广泛的工艺,其原理是利用有机溶剂与浸出液中的目标离子形成稳定的配合物,再采用适当的有机溶剂将其分离,从而提取目标金属及化合物。通常采用的萃取剂主要有Cyanex272、AcorgaM5640、P507、D2EHPA和PC-88A等。Swain等研究了Cyanex272萃取剂浓度对Co、Li分离的影响。结果表明,浓度在2.5~40mol/m3,Co的萃取率从7.15%增加到99.90%,Li的萃取率从1.36%增加到7.8%;浓度在40~75mol/m3,Co的萃取率基本不变,Li的萃取率迅速增加到18%;浓度高于75mol/m3时,Co的分离因子随浓度增加而减小,最大分离因子为15641。吴芳等两步法浸出后,采用萃取剂P204萃取净化浸出液,P507萃取分离Co、Li,后采用H2SO4反萃,回收后萃取液加入Na2CO3选择性回收Li2CO3。pH值为5.5时,Co、Li分离因子达到1×105,Co的回收率在99%以上;Kang等从成分为5%~20%Co、5%~7%Li、5%~10%Ni、5%有机化学品和7%塑料的废旧锂离子电池中回收硫酸钴,对于Co浓度为28g/L的浸出液,通过调节pH值至6.5沉降金属离子杂质如Cu、Fe和Al。然后通过Cyanex272从纯化的水相中选择性地萃取Co,当pH<6时,Co/Li和Co/Ni的分离因子接近750,Co的总回收率约为92%。可以发现,萃取剂的浓度对萃取率有着较大的影响,同时通过控制萃取体系的pH值,可以实现主要金属(Co和Li)的分离。

在此基础上,采用混合萃取体系处理废旧锂离子电池,可以较好的实现主要金属离子的选择性分离回收。Pranolo等研究了一种混合萃取体系选择性回收了废旧锂离子电池浸出液中的Co和Li。结果表明,将2%(体积比)AcorgaM5640添加到7%(体积比)Ionquest801中,可以降低萃取Cu的pH值,通过控制体系pH值使Cu、Al、Fe先被萃取到有机相中,实现了与Co、Ni、Li的分离。然后将体系pH值控制在5.5~6.0,采用15%(体积比)的Cyanex272将Co选择性萃取,萃取液中的Ni和Li可以忽略不计;张新乐等采用酸浸-萃取-沉淀法回收废旧锂离子电池中的Co。结果表明,酸浸液pH值为3.5、萃取剂P507与Cyanex272体积比为1∶1的条件下,经2级萃取,Co萃取率为95.5%。后续采用H2SO4反萃,反萃液pH值为4的条件下沉淀反应10min,Co的沉淀率可达99.9%。

综合看来,溶剂萃取法具有能耗低、分离效果好等优点,酸浸-溶剂萃取法是目前工业上处理废旧锂电池的主流工艺,但对于萃取剂的选择以及萃取条件的进一步优化仍是当前该领域的研究重点,以达到更为高效环保、可循环处理的效果。

沉淀法

沉淀法是将废旧锂离子电池预处理后,经溶解、酸溶后获得Co、Li溶液,加入沉淀剂沉降主要目标金属Co、Li等,从而达到金属的分离。Sun等采用H2C2O4作为浸出剂,同时将溶液中的Co离子以CoC2O4的形式沉淀出来,再通过加入沉淀剂NaOH和Na2CO3,将溶液中的Al和Li分别以Al(OH)3和Li2CO3的形式沉淀分离;潘晓勇等采用NaOH将pH调至5.0左右,能除去大部分Cu、Al、Ni,经进一步萃取除杂后,依次加入3%H2C2O4和饱和Na2CO3沉降CoC2O4和Li2CO3,Co回收率高于99%,Li回收率高于98%;李金惠等将废旧锂离子电池预处理后筛选出粒径小于1.43mm的物料与浓度为0.5~1.0mol/L的H2C2O4按照固液比15~25g/L反应40~90min,得到CoC2O4沉淀物和Li2C2O4浸出液,最终CoC2O4和Li2C2O4的回收率超过99%。沉淀法处理量大,主要金属的回收率较高,控制pH值可以实现金属的分离,易于实现工业化,但容易受杂质离子干扰,相较于萃取法产品纯度较低。因此,该工艺的关键在于选取选择性更好的沉淀剂以及进一步优化工艺条件,控制有价金属离子沉淀析出的顺序,从而提高产品的纯度。

电解法

电解法回收废旧锂离子电池中的有价金属,是对电极材料浸出液中的金属离子采用化学电解的方式,使其被还原成单质或沉积物。该方法不需要添加其它物质,不易引入杂质,可以获得纯度较高的产品,但多种离子存在的情况下会发生共沉积,从而会降低产品纯度,同时会消耗较多的电能。Myoung等以HNO3处理过的废旧锂离子电池正极材料浸出液为原料,采用恒电位法回收钴。电解过程中,O2与NO3-发生还原反应,OH-浓度增加,在Ti阴极表面生成Co(OH)2,经热处理得到Co3O4。化学反应过程如下:2H2O+O2+4e→4OHNO3-+H2O+2e→NO2-+2OHCo3++e→Co2+

Co2++2OH-/Ti→Co(OH)2/Ti

3Co(OH)2/Ti+1/2O2→Co3O4/Ti+3H2O

Freitas等采用恒电位和动电位技术从废旧锂电池正极材料中回收Co。结果表明:Co的电荷效率随着pH增大而减小,pH=5.40、电位-1.00V、电荷密度10.0C/cm2时,电荷效率最大,达到96.60%。化学反应过程如下:Co2++2OH-→Co(OH)2(s)

Co(OH)2(s)+2e→Co(s)+2OH-

离子交换法

离子交换法是利用Co、Ni等不同金属离子络合物在离子交换树脂上吸附能力的差异,实现金属的分离及提取。Feng等采用离子交换法从正极材料H2SO4浸出液中分离回收Co。从浸出液pH、循环次数等因素研究其对钴的回收率及与其它杂质分离的影响。结果表明,使用TP207树脂、控制浸出液pH=2.5、循环10次处理,Cu的去除率达到97.44%,钴的回收率达到90.2%。该方法对目标离子的选择性较强,工艺简单且易于操作,为废旧锂电池中有价金属的提取、回收提供了新途径,但因成本较高从而限制了工业化应用。

盐析法

盐析法是通过在废旧锂离子电池浸出液中加入饱和(NH4)2SO4溶液和低介电常数溶剂,从而降低浸出液的介电常数,使钴盐从溶液中析出。该方法工艺简单、易于操作且成本低,但在多种金属离子存在的条件下,伴随着其它金属盐的析出,从而会降低产品的纯度。金玉健等根据电解质溶液现代理论,利用盐析法回收废旧锂离子电池中的有价金属。在从LiCoO2为正极的HCl浸出液中加入饱和(NH4)2SO4水溶液和无水乙醇,当浸出液、饱和(NH4)2SO4水溶液和无水乙醇的体积比为2∶1∶3时,Co2+的析出率可达到92%以上。所得盐析产品为(NH4)2Co(SO4)2和(NH4)Al(SO4)2,采用分段盐析可使这两种盐分离,从而得到不同的产品。对于废旧锂离子电池浸出液中有价金属的提取与分离,以上是目前研究较多的几种方法。

综合考虑处理量、运行成本、产品纯度及二次污染等因素,表2总结对比了前文所述的几种金属分离提取的技术方法。

结语

目前,锂离子电池在电动能源等方面的应用愈加广泛,废旧锂离子电池数目不容小觑,对废旧锂离子电池中有价金属的回收具有重要的现实意义。现阶段废旧锂离子电池回收工艺主要是前处理-浸出-湿法回收。前处理包括对废旧锂电池进行放电、破碎及电极材料的分离富集等。其中,溶解法操作简单,同时可以有效提高分离效果及回收速率,但目前采用的主要溶剂(NMP)价格昂贵,一定程度上限制了工业化的应用,故寻找更为适合的溶剂是该领域值得研究的方向之一。

浸出过程主要是以酸-还原剂作为浸出剂,可以获得较好的浸出效果,但会产生无机废液等二次污染,而生物浸出法具有高效、环保及低成本等优势,但存在主要金属的浸出率相对不高,对于生物菌的选择及浸出条件的优化从而提高浸出率,可能会成为未来浸出过程的研究方向之一。

湿法回收浸出液中的有价金属是废旧锂离子电池回收过程的关键环节,也是近年来研究的重点和难点,主要的方法有溶剂萃取法、沉淀法、电解法、离子交换法、盐析法等。其中,溶剂萃取法是目前应用较多的方法,具有污染小、能耗低、分离效果好及产品纯度高等显著优势,对于更为高效廉价的萃取剂的选择和研发从而有效降低运行成本,以及多种萃取剂协同萃取的进一步探究可能是该领域重点研究的方向之一。

另外,沉淀法因其回收率高、成本低、处理量大等优点,也是值得重点研究的另一个方向。现阶段沉淀法存在的主要问题是产品纯度低,因此,对于沉淀剂的选择及工艺条件的优化,控制有价金属离子沉淀析出的顺序,从而提高产品纯度将会有较好的工业化应用前景。同时,在废旧锂离子电池处理过程中,不可避免会产生废液、废渣等二次污染,在资源化最大程度利用的同时要将二次污染的危害降至最低,以实现废旧锂离子电池绿色环保、高效及低成本回收。

钜大锂电,22年专注锂电池定制

钜大核心技术能力