钜大LARGE | 点击量:1154次 | 2019年06月05日
影响新能源汽车电池寿命的因素有哪些?
电动车开久了电池寿命和续航都会售影响,因为充放电过程中在不停的进行化学转换,会产生一些其他的电解物质,影响使用寿命,目前来说没有有效的办法避免,但这个过程一般都比较漫长,一般不用太担心。
电动汽车售价居高不下,主要的原因在于电池贵,而目前在售的电动汽车使用的电池大致分为两类:三元锂电池和磷酸铁锂电池。
磷酸铁电池特点是寿命长,可以循环使用2000次以上,充放电的倍率高,简单来说就是可以用更大的电流进行充电放电,另外就是安全性较好,一般弯曲、高温甚至穿刺都不会有问题,但缺点是能量密度较低,所以续航就相对较低,如果要满足续航就必须用更多的电池,增加了车重也增加了成本。三元锂电池能量密度高,所以续航表现会比较好,,寿命也比较长,但是造价会相对高一些。
目前国家规定,质保期内的电动汽车电池衰减不能超过20%,否则厂家要负责更换电池,日常用车我们也可用通过一些方式减少电池衰减,比如定期让电池满冲满放一次电,平时尽量在电量低于20%时再充电,快充和慢充搭配使用,尽量使用慢充。
最近连续阅读了一些资料,可以说锂电池寿命,是外部应力作用、电芯微观结构变化再到电芯外特性表现的三部曲。而一个外部特性,可能对应几种微观变化,比如内阻的增加即受到SEI膜生长的影响也受到系统内锂离子总量减少的影响;而一个微观上的变化,同样也可能带来几个不同方面的外特性的变化,比如电解质分解,既可能带来电阻的上升,也可能使得开路电压降低。外部应力的作用与微观结构的变化,同样存在类似关系。充电截止电压过高,可能造成阳极镀锂,也可能带来阴极活性材料晶格结构的变化;而阳极镀锂,可能是充电电压过高的结果,也可能是充电温度过低带来的影响。在一篇文章中,把微观和宏观结合,把外部应力和微观结构对应,把微观变化与电池外特性对应,使得影响电芯寿命的因素综合的在一页纸上呈现出来,相信可以对锂电池寿命问题形成比较全面的感受。当然,本文中的一些叙述,只代表一些研究中的当前观点。锂电池内部复杂的电化学过程,很多解释可能还算不上结论,是根据一些试验现象得出的推论,暂且把不会自相矛盾的观点综合到一起。
充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%
锂电池寿命,可以分别用日历寿命和循环寿命两个概念来考虑。其中循环寿命是指电池在工况循环或者常规循环过程中达到寿命终止所需要的时间;日历寿命是指电池在某参考温度下、开路状态达到寿命终止所需的时间,即电池在备用状态下的寿命。二者都属于常规应用。一般的,功率型电芯的寿命主要考察内阻变化,能量型电芯主要考察容量衰减情况。
而锂电池寿命的第三种情况,是不当操作,事故和滥用带来的电池寿命的短时间快速衰减。下面的内容,都糅合在一起讨论。
1从微观物理层面描述的老化原因
1.1阳极
在石墨阳极侧发生的与电池寿命相关的反应,主要包括SEI膜的形成、发展、破损和修复过程,锂单质电镀反应等。
1)SEI膜的两面,阻隔副反应和消耗锂离子
目前商业化的锂电池,无论三元,磷酸铁锂,锰酸锂等各种正极材料,配备的负极基本都是石墨材质。石墨负极与电解质不能稳定相容,在接触之初,会形成一层固态钝化膜solidelectrolyteinterface,即SEI膜,这层薄膜将电解液与石墨隔离开来,同时,薄膜上的空隙又允许锂离子的进出。同时,相对于电子导电,它又是绝缘体,不允许电子通过。可以说这样的性质非常理想了。因而SEI膜是锂电池电化学性能稳定的重要结构。
SEI膜主要的形成于电池的首次充放电过程中,并在其后的几个循环中仍然具有比寿命中其他周期里更快的生长速度。SEI主要的由锂离子与溶剂(EC/DMC)、痕量水、HF等在石墨表面形成,一层包含高分子与无机盐的多孔层。SEI膜的生长在首次充放电之后的几个循环内依然在生长。SEI的生长受到电解液的量/成分、充电电压/电流、温度等几个因素的影响。因此,每个电池厂家都会精心设计化成的充放电参数,以期待形成均匀致密的SEI层。SEI膜位置如下图所示。
在电池的日历寿命和循环寿命过程中,SEI并非静止不变的。在没有任何不当使用的情况下,SEI会逐渐生长,慢慢增加厚度,并存在一定比例的破损。破损的位置,电解液与石墨再次直接接触,重新构建新的SEI层。
SEI膜在电池老化过程中扮演着重要的角色。一方面,高质量的SEI膜是电池拥有长循环寿命的必备条件;另一方面,SEI的形成和修复的过程中,都需要锂离子作为原料,不可避免的消耗了系统中锂离子的数量;SEI的孔洞在使用过程中,由于应力作用,部分的坍塌变形,使得离子通路变得不再顺畅。这些微观上的变化,使得电池对外表现出内阻增加,容量下降,充电能力变差等寿命衰退的现象。
2)阳极镀锂
镀锂,对于锂电池来说,并非工作过程中必然需要发生的现象,现在的研究还不是特别透彻,但主流的观点认为,形成阳极镀锂的基本原因是大量锂离子在阳极堆积,无法顺利嵌入石墨层状结构,使得离子在电极表面得电子后沉积下来,形成锂单质堆积,又被称为枝晶生长。枝晶生长被认为是热失控的重要助攻因素。一方面,枝晶生长如果积聚的数量够大,可能刺穿隔膜,造成正负极短路,直接引发热失控。另一方面,锂单质是非常活泼的金属,在较低温度下就可以发生剧烈的反应。当电池出现自生热,积累过多热量造成较大温升时,锂单质可能发生剧烈反应,被认为是引发热失控的一大原因。
而可能形成大量锂离子阳极表面积聚的操作,被认为主要是充电过程中容易出现的问题,具体的说是下面三种情形:低温充电、过压充电和过大电流充电。
1.2阴极
锂离子电池中的离子,除了最初的电解液中存在一小部分以外,其最主要的来源就是阴极材料。锂离子存放在材料的晶格结构中,在充放电过程中,脱出或者嵌入。正常应用条件下,随着时间的推移,阴极材料主要的老化形式有两个。其一是晶格结构的塌陷局部材料从总体中脱落带来的活性物质总量的减少;其二是电解质与阴极材料的副反应的消耗。于是可以脱出的锂离子数量以及存放锂离子的空位的数量相应减少。如果遇到不当操作滥用,阴极材料因为种种应力作用而出现晶体的大规模破裂,则在短时间内就形成大量的活性物质损失。
上述微观上的阴极损伤,在电池外部特性上直接的表现为容量的减少;由于晶格结构的局部变化,离子进出的通路被阻断,至少是延长了离子在固体结构中扩散的路径,则电池内阻就会上升。
1.3电解质
电解质与电极材料之间并不是完美相容的,电解质与阳极石墨需要有SEI钝化膜的保护才能减少反应几率;与阴极材料之间,则时时有微量的副反应存在着,随着温度升高,反应有加剧的趋势。这些副反应都会消耗电解质,使得导电离子减少,有副反应气体产生。
外加电压过高,高于电解液能够承受的电压窗口,会加剧电解液的分解过程,分解产物同样包含可燃气体,损害电解液的导电能力。
电解质,作为电池内部锂离子正负极之间运动的通路,电解质的粘稠程度及电解质中锂离子的密度,会直接影响电荷传递的速率,对离子运动速率的不同阻碍程度。这种阻碍,对外就表现成锂电池的电阻。
上一篇:新能源汽车电池的安全性如何?
下一篇:影响电池续航能力的因素有哪些?