低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

磷酸铁锂电池性能科研应用技术的提升介绍

钜大LARGE  |  点击量:525次  |  2019年06月14日  

锂离子动力电池的性能主要取决于正负极材料,磷酸铁锂作为锂电池材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。

本项目属于高新技术项目中功能性能源材料的开发,是国家“863”计划、“973”计划和“十一五”高技术产业发展规划重点支持的领域。

锂离子电池的正极为磷酸铁锂材料,其安全性能与循环寿命有较大优势,这些也正是动力电池最重要的技术指标之一。1C充放循环寿命可做到2000次,穿刺不爆炸,过充时不容易燃烧和爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易并串联使用。

磷酸铁锂电池科研应用

近,有关新型电池取得进展、有望取代传统锂电池的报道接连不断最,让我们看到了手机、平板拥有更长续航时间的希望,不过可惜大部分都停留在实验室研究阶段,何时乃至能否大规模投入商用都不好说。现在,新能源公司DebochTEC.GmbH又带来了一种更接近现实的新能源技术:含铁的锂电池。

DebochTEC.GmbH公布的磷酸铁锂电池技术白皮书显示,在使用复合纳米材料后,单节32650规格(直径32mm/长度65mm)电芯的能量密度能够提升到6000mAh,与当前业界32650规格单节5000mAh的规格相比,同等体积提升了足足1000mAh,也就是20%之多,1节就能给iPhone4S手机反复充电差不多4次。

更令人欣喜的是,在单颗低倍率充放电环境下使用,这种电池在循环使用多达3000次后,电量依旧保持在80%左右,而普通锂电池循环充电500次左右就这德行了。按照每3天充放电一次计算,可以连续使用24年之久,是名符其实的长寿电池。

这种新型电池技术可以广泛应用于便携移动电源、小型UPS、笔记本电池、汽车电瓶等各种设备,而且针对不同使用环境,DebochTEC.GmbH还按照循环充电次数的差异使用了不同的电芯颜色:面向特种级的为金色,循环次数为3000次;民用汽车领域中使用蓝色,2500次;绿色的、2000次的适用于小型便携式移动设备。锂离子电池的正负极活性物质均为嵌入化合物,充电时Li+从正极脱出,经过电解质插入到负极;放电时则相反,电池的充放电过程实际上是Li+在两个电极之间来回嵌入和脱出的过程,故这种电池又称为“摇椅电池”(RockingChairBatteries,缩写为RCB)。其反应示意图及基本反应式如下所示:

1634126163-0.gif

2.聚合物锂离子电池技术

2.1聚合物锂离子电池的性能特点

聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据需要进行串并联或采用双极结构。

聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。

其工作性能指标如下:工作电压:3.8V;比能量:130Wh/kg,246Wh/L;循环寿命:>300;自放电:<0.1%/月;工作温度:253-328K;充电速度:1h达到80%容量;3h达到100%容量;环境因素:无毒。

2.2正极材料

锂离子电池的特性和价格都与它的正极材料密切相关,一般而言,正极材料应满足:⑴在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;⑵温和的电极过程动力学;⑶高度可逆性;⑷全锂状态下在空气中稳定性能好。随着锂离子电池的发展,高性能、低成本的正极材料研究工作在不断地进行。目前,研究主要集中于锂钴氧化物、锂镍氧化物和锂锰氧化物等锂的过渡金属氧化物[1](见表1)。

表1锂离子电池三种主要正极材料的比较

1634126433-1.gif

锂钴氧化物(LiCoO2)属于α-NaFeO2型结构,具有二维层状结构,适宜锂离子的脱嵌。由于其制备工艺较为简便、性能稳定、比容量高、循环性能好,目前商品化的锂离子电池大都采用LiCoO2作为正极材料。其合成方法主要有高温固相合成法和低温固相合成法,还有草酸沉淀法、溶胶凝胶法、冷热法、有机混合法等软化学方法。

锂镍氧化物(LiNiO2)为岩盐型结构化合物,具有良好的高温稳定性。由于自放电率低、对电解液的要求低、不污染环境、资源相对丰富且价格适宜,是一种很有希望代替锂钴氧化物的正极材料。目前LiNiO2主要通过Ni(NO3)2、Ni(OH)2、NiCO3、NiOOH和LiOH、LiNO3及LiCO3经固相反应合成。LiNiO2的合成比LiCoO2困难,其主要原因是在高温条件下化学计量比的LiNiO2容易分解为Li1-xNi1+xO2,过量的镍离子处于NiO2平面之间的锂层中,妨碍了锂离子的扩散,将影响材料的电化学活性,同时由于Ni3+比Co3+难得到,因此的合成必须在氧气气氛中进行[2]。

锂锰氧化物是传统正极材料的改性物,目前应用较多的是尖晶石型LixMn2O4,它具有三维隧道结构,更适宜锂离子的脱嵌。锂锰氧化物原料丰富、成本低廉、无污染、耐过充性及热安全性更好,对电池的安全保护装置要求相对较低,被认为是最具有发展潜力的锂离子电池正极材料。Mn溶解、Jahn-Teller效应及电解液的分解被认为是导致锂锰氧化物为正极材料的锂离子电池容量损失的最主要原因。

钜大锂电,22年专注锂电池定制

钜大核心技术能力