低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

电池组的一致性问题会带来哪些问题?电池均衡技术有哪些难点?

钜大LARGE  |  点击量:2534次  |  2019年12月23日  

充电均衡只能解决电池组充满电的问题,实际释放电量仍取决于电池组中的最小容量电池,而放电均衡则解决了所有电池容量统一调配的难题,可以实现容量安全利用的最大化、最佳化,本文通过两串电池组的实际均衡放电数据诠释了均衡放电的重要性。


电池组的一致性问题


电池组的一致性问题永远是电池管理界永远挥之不去的痛,一致性问题不仅使电池组的实际放电容量降低,影响设备的功率输出和续航时间,严重时还有可能发生热失控问题,导致故障的发生。


现在,全世界都在通过技术研发提高锂电池的单位容量,但限于技术等原因,进展缓慢,而已有的大容量电池组的容量又由于一致性问题有效容量得不到充分利用,除了电池生产因素导致的电池差异外,使用期间的温度、大电流充放电和电池管理跟不上都会导致这一问题的发生。


放电容量的下降与之对应的就是充电容量同样下降,如果是车用电池组,则表现为电池衰减严重,续航里程严重缩水。


电池均衡技术的难点


就目前的电池管理技术,能够解决电池组一致性问题的技术只有电池均衡技术。而要实现电池容量的充分利用,则必须要求电池均衡器同时支持放电均衡、充电均衡和静态均衡,此外,由于不同容量电池的存在,充放电末期存在较高的电压差,因此,电池均衡器还必须具有宽幅的均衡电流和高效的电能转换效率,既能实现高效均衡又能减少在充分利用容量期间的损失。


仍以本例电池组为例,假设电池组的放电电流为0.2C,即20A,那么,本文均衡器的最大均衡电流只要达到4.5~5.0A即可满足该电池组安全放电、并且所有20Ah的电量都可以正常释放的需要。同样,如果电池组的放电电流提高到0.4C,即40A,则最大均衡电流需要9~9.5A,普通电池均衡器是无法满足要求的,而本文采用的同步整流技术的实时高功率、高效率转移式电池均衡器则可以轻松应对。


均衡电流越大,对小容量电池的过充、过放电保护能力越强,电池组的运行越安全,允许电池间的差异越大。


高速放电均衡实例


高速放电均衡最主要的作用是对大容量电池进行放电电流分流,弥补小容量电池放电能力的不足,下面通过一组容量非常悬殊的电池组的均衡充放电实例及数据进行分析,由于电池容量差异巨大,因此,在大电流均衡充放电情况下,两块电池的的实际充放电电流差异非常大,差异非常明显。


高速充电均衡实例


这种电池均衡技术,不仅支持高速放电均衡,而且支持高速充电均衡,仍以上述电池组为例,同样以5A恒流充电至自动切换恒压充电期间,本应通过B1电池的的5A电流,实测最大充电电流只有0.84A左右,如图4所示;而B2电池的实测充电电流高达8.8A左右,如图5所示;最大均衡电流实测高达7.97A左右,这一数值正好接近于两块电池的实际充电电流的差值


钜大锂电,22年专注锂电池定制

钜大核心技术能力