钜大LARGE | 点击量:1811次 | 2020年02月05日
如何理解负反馈电路中的馈通
其中Aideal是理想极限aε→∞时的闭回路增益,aε是开回路增益,T=aε/Aideal是回路增益。尽管运算放大器是电压输入/电压输出(VV)元件,但它可以配置为四种拓扑结构中的任何一种。现在我们来讨论II拓扑结构,并由此引出负回馈的其他细节。电流放大器图2的回馈拓扑结构通常称为并联-串联型,其中具有开回路电压增益av的运算放大器被配置为电流放大,其增益可表示为A=iO/iI(除了av<∞的情况,该运算放大器假定是理想的。另外,为简单起见,我们假设负载短路,这是电流输出元件最简单的负载类型,就像开路是电压输出元件最简单的负载一样)。
图2:使用运算放大器作为电流放大器,或II转换器。要得到Aideal,参考图3a,我们有:
消除vO,整理得到:
参考图3b,可以看到沿回路传输的讯号vD首先被av放大,然后通过LD和R2完整地返回到运算放大器的反相输入端,因此回路增益仅为T=av。我们是否可以应用公式(1)得到下面的公式?
让我们透过pSpice软体工具来看一些特殊情况,例如R1=R2=10kΩ和av=10V/V。然后,公式(3)得出A=2/(1+1/10)=1.818A/A。然而,pSpice却得出1.909A/A,虽然差别不大,但对于这样简单的电路来说绝对是不能接受的。在图3c中av→0的情况下甚至出现更大的差异。藉由检查发现,iO=iI,因此A=iO/iI=1A/A,而公式(3)预测A=2av/(av+1)=2x0/(0+1)=0A/A!
图3:获得(a)Aideal;(b)回路增益T;(c)馈通增益aft的电路。有什么问题?公式(3)的问题在于它试图使II转换器符合图1的电路图,它假设讯号单向传输,即透过放大器正向传输,以及透过回馈网路反向传输,如图中的箭头图形所示。然而,仔细审视II转换器就会发现,回馈网路是双向的,如图3c所示,在将vN=vO/(1+R2/R1)回馈回运算放大器的反相输入时,网路也将iI前馈到负载,绕开了运算放大器。这时,馈通增益为aft=1A/A。我们该如何考虑这种双向性?电路很简单,我们可以直接分析它(参考文后的附录)。确切的结果是:
这与公式(3)不完全相同。但是,我们可以轻松地将公式(4)重新表达为:
其中最后一项确实考虑了讯号馈通。在我们的范例中(R1=R2=10kΩ及av=10V/V),公式(5)得出A=1.818+1/11=1.909A/A,本来就应该这样。透过pSpice查看各种增益还是很直观的。图4a的电路采用了一个直流增益为10V/V、增益频宽积GBp为10MHz的运算放大器(没错,这里特意采用低于标准的运算放大器,以更充分显示由馈通产生的影响)。从图4b的迹线(trace)可以看出,只要av(迹线#1)足够高,馈通分量(迹线#3)可以忽略不计。然而,av随着频率滚降,馈通变得越来越相关,最终占据主导地位。因此在高频下,迹线#4与迹线#3汇合,使得A→aft。
图4:(a)用于模拟图2电流放大器的pSpice电路图;(b)相对应的迹线:#1是开回路增益av,#2和#3是公式(5)右边的第一和第二分量,#4是整体闭回路增益A。渐近增益模型讨论了简单的II转换器,我们再用图5的电路图对图1的简单电路图作一个概括,称之为渐近增益模型(asymptoticgainmodel),该电路给出:
其中:
图5:考虑误差放大器的馈通并概括图1的电路图。我们应该担心馈通吗?将馈通项aftsI视为一种杂讯形式是有益的,我们将之反映到误差放大器的输入,即(aftsI)/aε。图6可以很容易证明这一点。
显然只要|aft|<<|aε|,馈通可能就不会是问题;但是,aε随着频率滚降(rollsoff),aft变得越来越相关,并最终占据主导。
图6:将馈通建模为一种输入杂讯形式。我们是否应关心馈通,取决于实际应用。
图7:使用GBp=1MHz和ro=100Ω的运算放大器来实现积分器。在积分器(integrator)电路中,馈通可能是一个问题。图7使用了一个1MHz运算放大器,其输出阻抗ro=100Ω,以接近理想的传递函数:
其中f0是积分器的单位增益频率:
在f→∞时,传递函数应降至零。然而,ro≠0的存在导致高频馈通增益aft(∞)≠0。因为在高频时C表现为短路,我们有:
图8:图7积分器的频率特性曲线,迹线#1是开回路增益,迹线#2是理想的积分传递函数Hideal,迹线#3是实际传递函数H(jf)。图8显示实际回应H仅在100H<f<1MHz的范围内接近Hideal。低于100Hz时,C表现为开路,使运算放大器工作在开回路模式。在1MHz时,差异函数D(jf)出现,导入了新的极点频率;这使得下降速率加倍,到3MHz左右,馈通出现。如果想让H更接近Hideal,请使用具有更高GBp的运算放大器。如果馈通在你的应用中是一个问题,可以透过使用具有较低ro的运算放大器或提高R的值来降低aft(∞)的值(同时降低C的值以保持相同的积分器单位增益频率)。从图9a可以看出,串联输入运算放大器配置中的馈通往往不那么严重,因为输入电压Vi必须透过运算放大器输入阻抗zi传输,这个阻抗通常很大。需要注意的是,在高频时zi往往是电容性(capacitive)的,因此会增加馈通量。并联输入配置中的馈通更严重,因为输入电流II直接馈入回馈网路。但要注意,zo可能会在高频下表现出电感性(inducTIvebehavior),因此其分流减少将允许更多的馈通。对于电流回馈运算放大器(见图9b),输入侧的情况相反。输入接脚上缓冲器的输出阻抗zn通常较小,因此Vi透过zn直接馈入回馈网路,而II则被zn分流到输入缓冲器。
图9:(a)电压回馈;(b)电流回馈运算放大器中的馈通。附录:电流放大器的直接分析我们看一下如何得到图2中电流放大器闭回路电流增益A和输入/输出电阻Ri和Ro的运算式。该电路非常简单,我们可以直接对其进行分析,忽视回馈分析的必要步骤。要得到A,使用图10a的电路,得到:
其中:
消除vO,整理得到:
图10:此电路可以得到(a)电流增益A=iO/iI;(b)输入;(c)图2中电流放大器的输出电阻Ri和Ro。我们也一并找出闭回路终端电阻Ri和Ro。为了找到输入源iI所见的电阻Ri,利用如图10b中的测试电流i,得到v:
求解比值Ri=v/i,得到:
为了找到负载LD所见的输出电阻Ro,施加一个测试电压v,如图10c所示,可以得到i:
其中:
求解比值Ro=v/i,得到:
小测验有四个学生(A、B、C和X)正在讨论图11的VI转换器,该转换器使用的运算放大器具有无限大输入电阻、零输出电阻,以及很大的开回路增益av。具体而言,他们试图找出负载LD所见的输出电阻Ro。
图11:(a)VI转换器的理想值iO=(1/R)Vi;以及(b)负载所见的电阻Ro。A:很明显,LD往上看到运算放大器的输出电阻,假设为零;向下只看到R,因为没有电流流入反相输入端。因此,Ro=0+R=R。X:没错!B:错!透过回馈作用,运算放大器在R和源Vi之间建立虚拟短路,这被认为是理想的,因此Ro=0+0=0。X:正确!C:我听说Ro应该比较大...X:这就是我一直说的:Ro→∞,至少理想情况下是这样。问题:你觉得上面哪一个学生是对的?
上一篇:电源负载和欠压、过压保护
下一篇:电源模块是什么