低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

带有数据显示功能的锂离子电池和镍镉电池充电系统

钜大LARGE  |  点击量:1216次  |  2020年06月04日  

摘要:本系统以pIC16F873单片机和LTC4002锂离子电池充电芯片为核心,针对不同电池的特性,采用不同的充电方式,可以对目前广泛使用的锂离子电池和镍镉电池充电,同时具有实时显示充电及放电电流、电池电压、容量统计和电池特性等功能,实现了符合铁道部所有相关规范的列车尾部保护装置的充电系统。关键词:锂离子电池;镍镉电池;充电器


引言鉴于市场上镍镉电池和锂离子电池共存的局面,本文设计的充电器可以对这两种电池进行充电,对镍镉电池组采用脉冲充电方式,对锂离子电池组采用恒流充电方式,这是依据电池的不同机理而设计的,真正做到了一机两用,此为该充电器的创新点,也是设计的难点。充电器的宽屏LCD可以同时显示4组充电器的充电状态,也可单独显示一组充电器上电池的各项参数,做到了对电池充电过程的实时监测。


系统整体设计系统设计目标是:1.可同时对4组8.4V的锂离子电池或9.2V的镍镉电池进行充放电。2.可与电池组中的芯片通信,判断电池的化学性质。3.关于不同化学性质的电池,将采用相应的充电方式。4.可与电池组中的芯片通信,得到该电池组的电压、充电电流、容量等参数。5.充电器带有LCD,可显示电池的各项数据。该充电器的功能框图如图1所示。


图1系统整体设计结构图


系统硬件设计总控单元的设计与实现总控单元是由微控制器pIC16F873和键盘控制芯片ZLG7289A构成的。重要任务是负责与各个充电单元通信,并处理用户输入与LCD显示信息。键盘控制芯片在这里负责6个按键和12个LED的控制。ZLG7289A与微控制器之间通过SpI总线进行双向通信。主控单元每秒查询一次各个充电单元,获取当前充电单元的信息,如有无电池、电池性质、电池电压等。之后由LCD模块向用户显示。充电单元的设计与实现LTC4002锂离子电池充电控制芯片LTC4002是一款高效独立开关模式锂离子电池充电控制器。该控制器有4.2V和8.4V两个版本。LTC4002-8.4具有500kHz开关频率,是高效电流模式的pWM控制器。通过驱动一个外部p沟道MOSFET,它可以供应4A的充电电流,而效率可高达90%。输出电压设置为8.4V,最终浮动电压并具1%的精度,而充电准确度为5%。此外,该器件可在9V~22V范围内的多种墙上适配器上运行。与迟滞拓扑结构充电器相比,LTC4002-8.4的快速运行频率与电流模式架构使之能够使用小型电感器和电容器。锂离子/镍镉电池两用充电单元的总体设计从前面对LTC4002的分析可知,该芯片是针对锂离子电池的充电控制器,要实现对镍镉电池充电要解决以下问题:首先,LTC4002对电池电压进行监测,保证电池电压不超过8.4V。但关于镍镉电池组,充电截止电压可以达到9.2V。其次,镍镉电池充电即将结束时,要对电池进行以正常电流30%和10%的涓流充电。所以,第二个要解决的问题是如何控制恒流充电的电流大小。此外,对镍镉电池充电应使用脉冲充电方式。即以1s为周期,95%的时间用来充电,1%的时间用来放电,其余时间不充电也不放电。最后,如何判断某一个电池是锂离子电池还是镍镉电池,因为若把锂离子电池误判为镍镉电池,会使充电电压高于8.4V,这对锂离子电池是十分危险的,而将镍镉电池误判为锂离子电池,则可能造成电池充电不足。因此,必须保证极低的误判率。本部分根据LTC4002的工作原理,设计了既可以对锂离子电池进行恒流-恒压充电,又可以对镍镉电池进行脉冲式充电的电路。充电单元的总体功能框图如图2所示。其中,信号调理电路使充电器既可以对8.4V的锂离子电池充电,又可以对9.2V的镍镉电池充电,同时也起到控制充电电流大小的用途。


图2充电单元的总体功能框图利用微控制器控制LTC4002的工作状态,配合放电电路使充电器可以对镍镉电池进行脉冲方式充电。微控制器通过一定的通信协议(HDQ16)与智能电池通信,确定其容量、化学性质等关键参数。信号调理电路的设计为了使LTC4002可对高于8.4V的电池进行恒流充电,并可调节充电电流,在LTC4002的BAT和SENSE端与采样电阻之间加入一级信号调理电路。该电路的重要功能是对采样电阻两端的信号进行运算,针对不同化学性质的电池,将相应的信号送给LTC4002。该信号调理电路如图3所示。


图3信号调理电路的功能图这里含义采样电阻两端的电压值是VBAT和Vsense,那么充电电流在采样电阻上的压降VRS为:VRS=Vsense-VBAT,该信号为减法器的输出。设乘法器的乘系数为K,那么乘法器的输出为KVRS。关于锂子电池,二选一开关将选通电池电压VBAT;关于镍镉电池,二选一开关将选通7V恒定电压。这里设二选一模拟开关的输出为V1,那么加法器的输出Vs应为:Vs=KVRS+V1,这样一来,送到LTC4002的BAT和SENSE两端的电压之差应为KVRS。只要正确控制K值,就可以使充电电流为正常充电电流的1/K。因此,可以通过二选一开关控制电流为恒流充电时的10%或30%。关于LTC4002的BAT端输入值,当开关选通锂离子电池时,BAT的输入即是电池电压。此时,LTC4002可以控制整个锂离子的充电过程。不需任何外界的干预。当开关选通了7V恒定电压后,BAT端的输入恒定为7V,此时,LTC4002无法了解电池的真实电压,只认为电池电压为7V。所以,尽管电池电压高于8.4V,仍会以恒定电流对电池进行充电。在这种情况下,要微控制器的干预,否则,会造成电池的过充。由于微控制器内部带有ADC,可以监测电池电压的变化。当电池电压达到指定值时,减小充电电流,直至电池充满。这样就可以对9.2V的镍镉电池进行充电了。脉冲充放电电路的设计由于LTC4002是恒流充电控制芯片,因此,必须使用微控制器控制其充电使能引脚COMp。当要LTC4002输出充电脉冲时,使控制COMp引脚的端口变为高阻态,使COMp引脚自行升至360mV以上时,便有充电电流输出。放电时,必须将COMp引脚拉低,使LTC4002关断充电电流。之后,再打开放电电路。微控制器选用pIC16F873,它是一款基于Flash的8位微控制器。内部有按时器、看门狗电路、10位ADC等模块。


图4充电单元主程序流程图微控制器以1s为周期对镍镉电池进行脉冲充放电。系统软件设计系统软件总体设计充电单元中的微控制器重要负责充电过程的控制和与总控板的通信,程序流程如图4所示。充电单元首先判断是否有电池,假如有电池放入,则判断充放电状态,默认是充电状态,该状态可由总控单元改变。若充电单元处于充电状态,则继续判断电池的化学性质,针对不同的电池采用不同的充电方式。若处于放电状态,则对电池组进行放电,直到电池电压低于阈值电压后,转为充电状态。除主程序外,总控单元与充电单元的通信是在中断服务程序中实现的。当充电单元收到总控单元的指令后,进入中断。若指令是查询数据指令,则向总控单元发送要的数据。若是充电状态设置指令,则依据指令设置充电单元的充电状态。通信协议的实现通过与电池组中电能计量芯片通信的方法来判断电池的性质。本系统可以与遵循HDQ16接口协议的智能电池组进行通信,除了电池组的化学性质外,还可以将电池组的容量、电压、充电电流、编号等数据一并读取,供充电器显示之用。充电单元可以通过HDQ总线对智能电池进行读操作。HDQ16接口协议是基于指令的协议。一个处理器发送8位指令码给智能电池,这个8位的指令码由两部分组成,7位HDQ16指令码(位0~6)和1位读/写指令。读/写指令指示智能电池存储接下来的16位数据到一个指定的寄存器,或者从指定的寄存器输出16位数据。在HDQ16里,数据字节(指令)或者字(数据)的最不重要的位会优先传输。一个块的传输包括三个不同的部分。第一部分经由主机或者智能电池把HDQ16引脚置逻辑低状态一个tSTRH:B时间后开始发送。接下来的部分是真正的数据传输,数据位在tDSU:B时间间隔里是有效的,负边界用来开始通信。数据位被保持一个tDH:DV时间间隔,以便允许主机或智能电池采样数据位。在负边界开始通信后,最后一部分通过返回给HDQ16引脚一个逻辑高状态,至少保持tSSU:B时间间隔来停止传输。最后一个逻辑高状态必须保持一个tCYCH:B时间间隔,以便有时间让块传输完全停止。假如发生通信错误(e.g.,tCYCB>250ms),主机就发送给智能电池一个BREAK信号,让其控制串行接口。当HDQ16引脚在一个时间间隔,或者更长时间里为逻辑低状态时,智能电池就会侦测BREAK。然后,HDQ16引脚回到其正常预设高逻辑状态一个tBR时间间隔。然后,智能电池就准备从主机那里接收指令。HDQ16引脚是开漏的,要一个外部的上拉电阻。图5是用逻辑分析仪显示的一次HDQ总线上的通信波形。


图5一次HDQ总线通信波形


结语本文提出的充电系统从技术上很好地解决了上述问题,通过LCD显示屏可以清晰便捷地读出电源的剩余容量、已有充放电次数、充电及放电电流、电池电压、容量统计和电池特性等重要内容,并且通过设定,可以判断电源是否达到报废标准,及时提醒操作者更新电源。为电源维护保养工作供应明确的参考数据,降低了对操作人员专业技术水平的要求,保证了列车尾部电源的安全使用。■


参考文献:1.pIC16F87X.28/40-pin8-BitCMOSFLASHMicrocontrollers.Microchip,2001.2.ZLG7289A.串行接口8位LED数码管及64键键盘智能控制芯片3.LTC4002.StandaloneLi-ionSwitchModeBatteryCharger.Linear,20034.李学海.pIC单片机实践.北京:北京特种航天大学出版社,20045.BQ2060A.SBS-V1.1-CompliantGasGaugeIC.TexasInstruments,20066.朱君.列尾装置使用问题的调研分析.铁道运输与经济,2004,26(1):717.王新,范卫斌,张金平.列尾装置故障、维修及专用电池使用的研究.铁道运输与经济,2002,24(13):5-10


钜大锂电,22年专注锂电池定制

钜大核心技术能力