钜大LARGE | 点击量:847次 | 2018年12月21日
北理工在锂硫电池动力学调节取得的突破
近日,北京理工大学前沿交叉科学研究院黄佳琦课题组在锂硫电池动力学调节方面研究取得新进展,相关研究成果以《ActivatingInertMetallicCompoundsforHigh-RateLithium–SulfurBatteriesThroughIn-SituEtchingofExtrinsicMetal》为题在线发表于化学类顶级国际期刊《AngewandteChemieInternationalEdition》(《德国应用化学》,影响因子12.10)。该研究利用原位刻蚀的Ni3FeN促进多硫化物的表面反应,并采用先进的表征技术揭示了原位催化转化机理。该工作开拓了多金属合金/化合物作为高倍率Li–S电池动力学促进剂的新思路,也提出了催化表面反应和缺陷化学作用的新见解。本文的第一作者为北京理工大学前沿交叉科学研究院/材料学院硕士研究生赵梦,共同第一作者为清华大学彭翃杰博士,通讯作者为黄佳琦特别研究员。
因为具有较高的理论比能量,Li–S电池作为锂离子电池最有希望的替代品受到极大的关注。其高能量密度依赖于可逆的表面电化学反应,在硫正极中引入电催化活性成分可以有效加速表面反应动力学,从而提高硫的利用率并减轻多硫化物的穿梭效应。然而,在电池工作条件下催化剂的真实活性相此前几乎没有被验证过。深入挖掘表面反应机理,探明催化剂活性的来源对于指导催化剂设计具有关键作用。
图1.多硫化物刻蚀诱导的活化机制
类似于金属催化剂设计的合金化策略,该团队在单金属化合物中引入外在金属,活化了原来的惰性相化合物,从而促进多硫化物的表面反应动力学。以六方氮化镍(Ni3N)作为概念验证,其对多硫化物的催化活性较差。在引入铁元素后,Ni3N转变为高活性的立方镍铁氮化物(Ni3FeN)。在Ni3FeN中,处于立方结构顶角处的较高正电性的铁(与镍相比)倾向于通过多硫化物的刻蚀过程浸出,从而在镍位点的周围留下大量空位缺陷,极大地提高了Ni3N的催化活性。
图2.(a,b)循环前和(c,d)循环后Ni3FeN-G的HAADF-STEM图像和相应的元素分布
该团队利用高角度环形暗场扫描透射电子显微镜和相应的元素映射来揭示上述机制。如图2所示,循环前的Ni3FeN颗粒中Ni和Fe元素的分布较为均匀。而循环后的Ni3FeN颗粒显示出异常的铁元素的表面富集,证明在循环期间由于多硫化物的刻蚀作用发生了相迁移,从而留下大量Fe元素的空位并提高催化活性。
图3.Ni3FeN催化作用下Li–S电池的电化学性能
铁元素通过多硫化物的原位刻蚀作用而浸出,产生高活性的富空位相,从而促进了多硫化物的动力学转化过程。这种富空位的Ni3FeN催化的Li–S电池表现出优异的倍率性能和高硫负载下的循环稳定性,并且可以极大降低电解液用量。这项工作不仅阐述了惰性单金属化合物的外在金属活化机制,也证明了原位相演化和空位的形成在调节催化反应中的重要作用。
上一篇:电池中铜箔生产的方法及工艺流程
下一篇:德国大众电池在应用方面的最新成果