钜大LARGE | 点击量:1554次 | 2019年03月27日
超级电容电池知识全解析(2)
六、超级电容电池的两个电容形式
实践过程中,人们为了达到提高电容器的性能,降低成本的目的,经常将赝电容电极材料和双电层电容电极材料混合使用,制成所谓的混合电化学电容器。混合电化学电容器可分为两类,一类是电容器的一个电极采用赝电容电极材料,另一个电极采用双电层电容电极材料,制成不对称电容器,这样可以拓宽电容器的使用电压范围,提高能量密度;另一类是赝电容电极材料和双电层电容电极材料混合组成复合电极,制备对称电容器。
1、法拉第赝电容器
法拉第赝电容器也叫法拉第准电容,是在电极表面活体相中的二维或三维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附或氧化还原反应,产生与电极充电电位有关的电容。这种电极系统的电压随电荷转移的量呈线性变化,表现出电容特征,故称为“准电容”,是作为双电层型电容器的一种补充形式。
法拉第准电容的充放电机理为:电解液中的离子(一般为H+或OH-)在外加电场的作用下向溶液中扩散到电极/溶液界面,而后通过界面的电化学反应进入到电极表面活性氧化物的体相中;若电极材料是具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新回到电解液中,同时所存储的电荷通过外电路释放出来。
2、双电层电容器
一对浸在电解质溶液中的固体电极在外加电场的作用下,在电极表面与电解质接触的界面电荷会重新分布、排列。作为补偿,带正电的正电极吸引电解液中的负离子,负极吸引电解液中的正离子,从而在电极表面形成紧密的双电层,由此产尘的电容称为双电层电容。双电层是由相距为原子尺寸的微小距离的两个相反电荷层构成,这两个相对的电荷层就像平板电容器的两个平板一样。Helmholtz首次提出此模型。
能量是以电荷的形式存储在电极材料的界面。充电时,电子通过外加电源从正极流向负极,同时,正负离子从溶液体相中分离并分别移动到电极表面,形成双电层;充电结束后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。在放电时,电子通过负载从负极流到正极,在外电路中产生电流,正负离子从电极表面被释放进入溶液体相呈电中性。
七、超级电容电池的泄露电流现象
当超级电容充电时,泄漏电流会随着时间而衰减,因为碳电极中的离子会扩散进入孔隙中。泄漏电流会稳定在一个均衡值,该值取决于电容、电压和时间。泄漏电流与电容芯成正比。超级电容均衡泄漏电流的经验估计算法为室温下1μA/F。图6中的150mF电容,在160小时后的泄漏电流为0.2μA和0.3μA。泄漏电流随温度升高而呈指数上升。
当温度升高时,稳定到均衡值的时间会减小,因为离子扩散的速度更快。因此,这些电容从0V充电需要的时间最小。根据不同的超级电容,这个电流范围从5μA~50μA。设计者在为能量采集电路挑选超级电容时,应考虑测试这个最小充电电流。
八、超级电容电池的充电
一个放电的超级电容就像一个与能量源短接的电路。所幸,很多能量采集源(如太阳能电池和微发电机)都可以驱动一个短接的电路,从0V起为一只超级电容直接充电。与各种能量源(如压电或热电能)接口的IC必须能够驱动一个短接的电路,从而为超级电容充电。
业界在MPPT(最大峰值功率追踪)方面做了很大努力,以从能量采集源最有效地获得功率。当必须用恒压方式为电池充电时,这种方案是可行的。电池充电器通常是一个dc/dc转换器,它对能量源是一个恒定功率的负载,因此,采用MPPT在最高效点获得能量就是有意义的。
与电池相反,超级电容不需要以恒压充电,而以电源可以提供的最大电流充电时效率最高。一个简单而有效的充电电路,用于太阳能电池阵列的开路电压小于超级电容额定电压的情况。二极管可防止超级电容在太阳能电池无光照情况下对其反充电。如果能源的开路电压大于超级电容的电压,则超级电容需要采用分流稳压器做过压保护。分流稳压器是过压保护一种廉价而简单的方案,一旦超级电容充满电,就无所谓是否消耗了过多的能量。
能量采集器就像一根能无限供水的水管,为一个水槽注水(好比一只超级电容)。如果水槽满了,水管仍开着,水就会溢出。这与电池不同,电池供给能量有限,因此需要串联稳压器。
在电路里,超级电容为0V,从一块太阳能电池芯获取短路电流。随着超级电容的充电,电流下降,这取决于太阳电池芯的电压/电流特性。但超级电容总是要获取可能的最大电流,因此它以尽可能大的速率充电。中的电路采用了TLV3011太阳能电池芯,因为它内含了一个电压基准,只需要约3μA的静态电流,并且它是一种漏极开路电池芯,当稳压器关断时,输出就是开路的。电路采用了BAT54二极管,因为它在小电流时有低的正向压降,即在正向电流小于10μA时,正向电压小于0.1V。
微发电机很适合于工业控制应用,如监控旋转的机器,因为机器在工作时会发生振动。给出了一只微发电机的电压-电流特性,它类似于一只太阳能电池芯,能够为一个短接电路提供最大的电流。微发电机还带有一个二极管桥,可防止超级电容为发电机反向充电,这就得到了一个简单的充电电路。
当超级电容充电时,泄漏电流会随着时间而衰减,因为碳电极中的离子会扩散进入孔隙中。泄漏电流会稳定在一个均衡值,该值取决于电容、电压和时间。泄漏电流与电容芯成正比。超级电容均衡泄漏电流的经验估计算法为室温下1μA/F。中的150mF电容,在160小时后的泄漏电流为0.2μA和0.3μA。
泄漏电流随温度升高而呈指数上升。当温度升高时,稳定到均衡值的时间会减小,因为离子扩散的速度更快。因此,这些电容从0V充电需要的时间最小。根据不同的超级电容,这个电流范围从5μA~50μA。设计者在为能量采集电路挑选超级电容时,应考虑测试这个最小充电电流。
九、超级电容电池带动风力发电革命
作为新兴储能元件,超级电容具有循环寿命长,充放时间快等特点,在风力发电机狭小的密闭有限空间轮毂控制柜内,超级电容更具有适应温度范围广,体积小容量大,可焊接,维护简单等优点,在风电设备系统中,超级电容不会过充,过放影响寿命,充放电过程仅仅是物理层面上的变化,不会对常年密闭空间作业的轮毂内部造成二次污染,超级电容以保持稳定的直流电压,保证变桨伺服电机的正常运作。
超级电容的基本工作原理是碳碳双电层原理,存储过程可逆,分析时采用RC模型,包括理想电容C等效串联内阻RESP,等效并联内阻REPR,RESP影响超级电容充放电效率,REPR影响电容自放电,即长期静止存储。存电荷不一样的是,双电层电容器是在电极-电解质表面以静电形式的电荷进行储能。这种储能模式具有快速充电/放电能力、高可靠性和长循环寿命的特点,相对于铅酸蓄电池,对于紧急变桨供电对多变的风况的情况下更具有优势。
更换了一部分超级电容以后针对于风能随机性强力,环境恶劣,温度湿度变化大,盐雾污秽侵蚀严重等因素对供电模块影响。可以得出超级电容相比铅酸蓄电池更加稳定,实用性和可行性更强可以预见超级电容的应用在风力发电技术越来越成熟的发展中所占的比例将逐渐上升。所以超级电容做为风力发电机后备电源具有很强的可行性。
十、超级电容电池变革新能源汽车
超级电容在新能源汽车中主要有三类应用:一是作为动力设备,如上海11路公交即为超级电容大巴,车辆运行中途充电只需30秒,一次充电可行驶5~8公里,既节能环保又兼顾城市景观;二是作为发动机的辅助驱动,在汽车快速启动时提供较大的驱动电流,减少了油耗和不完全燃烧的污染排放;三是对制动能量进行回收利用,当汽车需要加速时,再将这些储存的能量释放出来,提高了能源的使用效率。
总结:电池是动力的源头,而电容作为存储电量的基本,其重要性当然是非常重要的,如果电容和电池的特点能够结合,那么肯定是非常具有诱惑力的,这就是超级电容电池的最大潜力,所以说,如果这种电池能够得到普及的话,那必将会带来一个革命。
上一篇:超级电容器能否替代锂电池?
下一篇:超级电容电池知识全解析(1)