低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

锂离子电池的鼓胀原由

钜大LARGE  |  点击量:363次  |  2023年06月29日  

一、电极极片厚度变化


锂离子电池使用过程中,电极极片厚度会发生一定的厚度变化,尤其是石墨负极。据现有数据,锂离子电池经过高温存储和循环,容易发生鼓胀,厚度上升率约6%~20%,其中正极膨胀率仅为4%,负极膨胀率在20%以上。


锂离子电池极片厚度变大导致的鼓胀根本原由是受石墨的本质影响,负极石墨在嵌锂时形成LiCx(LiC24、LiC12和LiC6等),晶格间距变化,导致形成微观内应力,使负极出现膨胀。下图是石墨负极极片在放置、充放电过程中的结构变化示意图。


石墨负极的膨胀紧要是嵌锂后出现不可恢复膨胀导致的。这部分膨胀紧要与颗粒尺寸、粘接剂剂及极片的结构有关。


负极的膨胀造成卷芯变形,使电极与隔膜间形成空洞,负极颗粒形成微裂纹,固体电解质相界面(SEI)膜发生破碎与重组,消耗电解液,使循环性能变差。影响负极极片变厚的因素有很多,粘接剂的性质和极片的结构参数是最紧要的两个。

过针刺 低温防爆18650 2200mah
符合Exic IIB T4 Gc防爆标准

充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%

石墨负极常用的粘接剂是SbR,不同的粘接剂弹性模量、机械强度不同,对极片的厚度影响也不同。极片涂布完成后的轧制力也影响负极极片在电池使用中的厚度。在相同的应力下,粘接剂弹性模量越大,极片物理搁置反弹越小;充电时,由于Li+嵌入,使石墨晶格膨胀;


同时,因负极颗粒及SbR的形变,内应力完全释放,使负极膨胀率急剧升高,SbR处于塑性变形阶段。这部分膨胀率与SbR的弹性模量和断裂强度有关,导致SbR的弹性模量和断裂强度越大,造成不可逆的膨胀越小。


当SbR的添加量不一致时,极片辊压时受到的压力就不同,压力不同使极片出现的残余应力存在一定差别,压力越大残余应力越大,导致前期物理搁置膨胀、满电态及空电态膨胀率增大;SbR含量越少,辊压时所受压力越小,前期的物理搁置、满电态和空电态的膨胀率就越小;负极膨胀使得卷芯变形,影响负极嵌锂程度和Li+扩散速率,进而对电池循环性能出现严重影响。


二、电池产气引起的鼓胀


电池内部产气是导致电池鼓胀的另一紧要原由,无论是电池在常温循环、高温循环、高温搁置时,其均会出现不同程度的鼓胀产气。据目前研究结果显示,引起电芯胀气的本质是电解液发生分析所致。

无人船智能锂电池
IP67防水,充放电分口 安全可靠

标称电压:28.8V
标称容量:34.3Ah
电池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
应用领域:勘探测绘、无人设备

电解液分析有两种情况,一个是电解液有杂质,比如水分和金属杂质使电解液分析产气,另一个是电解液的电化学窗口太低,造成了充电过程中的分析,电解液中的EC、DEC等溶剂在得到电子后,均会出现自由基,自由基反应的笔直后果就是出现低沸点的烃类、酯类、醚类和CO2等。


在锂离子电池包装完成后,预化成过程中会出现少量气体,这些气体是不可戒备的,也是所谓的电芯不可逆容量损失来源。在首次充放电过程中,电子由外电路到达负极后会与负极表面的电解液发生氧化还原反应,生成气体。在此过程中,在石墨负极表面形成SEI,随着SEI厚度新增,电子无法穿透抑制了电解液的继续氧化分析。


在电池使用过程中,内部产气量会逐渐增多,其原由还是因为电解液中存在杂质或电池内水分超标导致的。电解液存在杂质要认真排除,水分控制不严可能是电解液本身、电池封装不严引进水分、角位破损引起的,另外电池的过充过放滥用、内部短路等也会加速电池的产气速度,造成电池失效。


在不同体系中,电池产鼓胀程度不同。在石墨负极体系电池中,产气鼓胀的原由紧要还是如上所述的SEI膜生成、电芯内水分超标、化成流程异常、封装不良等,而在钛酸锂负极体系中,电池胀气比石墨/NCM电池体系要严重的多,除了电解液中杂质、水分及工艺外,其另一不同于石墨负极的原由是钛酸锂无法像石墨负极体系电池相同,在其表面形成SEI膜,抑制其与电解液的反应。


在充放电过程中电解液始终与Li4Ti5O12表面笔直接触,从而造成电在Li4Ti5O12材料表面继续还原分析,这可能是导致Li4Ti5O12电池胀气的根本原由。气体的紧要组分是H2、CO2、CO、CH4、C2H6、C2H4、C3H8等。


当把钛酸锂单独浸泡于电解液中时,惟有CO2出现,其与NCM材料制备成电池后,出现的气体包括H2、CO2、CO以及少量气态碳氢化合物,并且作成电池后,惟有在循环充放电时,才会出现H2,同时出现的气体中,H2的含量超过50%。这声明在充放电过程中将出现H2和CO气体。1.封装不良,由封装不良所引起胀气电池芯的比例已经大大地降低。前面已经解析了引起Topsealing、Sidesealing和Degassing三边封装不良的原由,任何一边封装不良都会导致电池芯,表现以Topsealing和Degassing居多,Topsealing紧要是Tab位密封不良,Degassing紧要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。封装不良引起空气中水分进入电池芯内部,引起电解液分析出现气体等。


2.Pocket表面破损,电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket破损(如针孔)而使水分进入电池芯内部。


3.角位破损,由于折边角位铝的特殊变形,气袋晃动会扭曲角位导致Al破损(电池芯越大,气袋越大,越易破损),失去对水的阻隔用途。可以在角位加皱纹胶或热熔胶缓解。并且在顶封后的各工序禁止拿气袋移动电池芯,更要留意操作方式戒备老化板上电芯池的摆动。


4.电池芯内部水含量超标,前面我们已经解析过对电池芯内水含量有一定的要求,一旦水含量超标,电解液会失效在化成或Degassing后出现气体。造成电池内部水含量超标的原由紧要有:电解液水含量超标,baking后裸电芯水含量超标,乾燥房湿度超标。若怀疑水含量超标导致胀气,可进行工序的追溯检查。


5.化成流程异常,错误的化成流程会导致电池芯发生胀气。


6.SEI膜不稳定,电池芯在容量探测充放电过程中发射功能轻微胀气。


7.过充、过放,由于流程或机器或保护板的异常,使电池芯被过充或过度放电,电池芯会发生严重鼓气。


8.短路,由于操作失误导致带电电芯两Tab接触发生短路,电池芯会发生鼓气同时电压迅速下降,Tab会被烧黑。


9.内部短路,电池芯内部阴阳极短路导致电芯迅速放电发热同时严重鼓气。内部短路的原由有很多种:设计问题;隔离膜收缩、捲曲、破损;bi-cell错位;毛刺刺穿隔离膜;夹具压力过大;烫边机过度挤压等。例如曾经由于宽度不足,烫边机过度挤压电芯实体导致阴阳极短路胀气。


钜大锂电,22年专注锂电池定制

钜大核心技术能力