钜大LARGE | 点击量:693次 | 2022年03月24日
二次电池新材料的研发过程基于材料基因组
近年来,在锂二次电池新材料的研发过程中逐渐建立了基于材料基因组思想的高通量计算理论工具与研究平台。在该平台上,通过将不同精度的计算方法组合,实现了基于离子输运性质的材料筛选;通过将信息学中数据挖掘算法引入高通量计算数据的分析,证实了材料大数据解读的可行性。
上述平台实现了在锂电池固体电解质的高通量筛选、优化和设计上进行新材料研发的示范应用,通过高通量计算筛选获得了两种可用于富锂正极包覆材料的化合物Li2SiO3和Li2SnO3,有效改善了富锂正极的循环稳定性;通过对掺杂策略的高通量筛选,获得了提高固体电解质β-Li3PS4离子电导率和稳定性的方案;通过高通量结构预测设计了全新的氧硫化物固体电解质LiAlSO;并在零应变电极材料结构与性能的构效关系研究中进行了大数据分析的尝试,分析了零应变电极材料的设计依据。上述材料基因组方法在锂电池材料研发中的应用为在其他类型材料研发中推广这种新的研发模式提供了可能。
传统的电池材料研发是基于以“试错法”为特征的开发模式,从发现到应用的周期很长,一般需要20年或更长时间。“材料基因组计划”的提出,为锂电池新材料的开发提供新的思路。“材料基因组”科学研究的关键是实现材料研发的“高通量”,即并发式完成“一批”而非“一个”材料样品的。
计算模拟、制备和表征,即高通量计算、高通量制备与高通量表征,实现系统的筛选和优化材料,从而加快材料从发现到应用的过程。利用“材料基因工程”方法,通过高通量、多尺度的大范围计算和搜索,借助数据挖掘技术和方法,有望筛选出可能具有优异性能的新材料。设计了将不同精度计算方法相结合的高通量筛选流程:
首先依据材料的使用条件通过元素筛选缩小范围,然后采用快速的键价计算进行初步筛选去除离子输运势垒较大的化合物,最后采用基于密度泛函的模拟对上一步筛选得到的材料进一步精确计算获得最终的备选材料,从而有效地提高了整体的筛选效率,实现了锂二次电池材料中快离子导体的高效筛选。
充电温度:0~45℃
-放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%
上一篇:氢燃料动力电池及汽车,你知多少?